
k AD-AISI 371 SWITCH-LEVEL TIMING SIMULATION OF NOS VLSI 1/'3
I (METAL OXIDE-SEMICONDUCTOR VER..(U) ILLINOIS UNJY AT
I URBANA COORDINATED SCIENCE LAO V B ROO JAN 9 R-1032p UNCLAS5SIFIED N98814-84-C-149 F/O 9/5 NL

Ehj hhhhhh

-a .

IIII= ,._"
L

11111-25
1111.2.-.1 1 4 lIll' 1.

MICROCOPY RESOLUTION TEST CHART

NAIONAL BUREAU OF STANDARDS -1963 A

-a-

.X V t - . . . a - , .-.

REPORT R-10321 MARCH 1985 UILU-ENG85-2207

W COORDINATED SCIENCE LABORATORY

SWITCH-LEVEL
TIMING SIMULATION
OF MOS VLSI CIRCUITS

VASANT BANGALORE RAO

DTIC
ELECTESNOV 2 01985

i(

~ I APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.
LA_

ERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

r Unclassified
,CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ft. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

" Unclassified . None
I7,.SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAILABILITY OF REPORT

N/A Approved for public release, distribution
- . OECLASSIFICATIONVOOWNGRAOING SCHEOULE unlimited.::! IN/A
-04. PiRFORMING ORGANIZATION REPORT NUMERI(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

R-1032 UILU-ENG 85-2207 N/A

I.NAMB OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

-'Coordinated Science Laboratory (Itca e
" University of Illinois N/A Office of Naval Research

* lOORS (City. State and ZIP Code) 7b. AOORESS (City. State and ZIP Code,

1101 W. Springfield Avenue 800 N. Quincy Street
iUrbana, Illinois 61801 Arlington, VA 22217

.'kB NAME OF FUNOING/SPONSORING ft OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Joint Services (It apluiek)

gElectronics Program and IBM N/A N00014-84-C-0149 and IBM Tech
ISaL ADDRESS (City. Staft Md ZIP Code) 10. SOURCE OF FUNOING NOS.

fJSEP - 800 N. Quincy St., Arlington, VA 22217 PROGRAM PROJECT TASK WORK UNIT

IBM - General Technology Div., Burlington, VT LEMENT NO. NO. NO. No.

"M 05401 N/A N/A N/A N/A
.11. TITLE (Include *icurty Ch ioeggin) SWITCH-LEVEL TIMING

SSMULATION OF MOS VLSI CIRCUITS _

--" ERSONA-AUTNORS) ~Rao, Vasant Bangalore

,l.d TYPE OF REPORT Interim O3b6 TIME COVERED 14. DATE OP REPORT (Yr.. Wo.. Day) 15. PACE COUNTI Technil final PROM A1L ., TO~J Jaduary 1985 2

r .. SUPPLFMENTARY NOTATION

N/A

17. COSATICOOES ,IS. SUSJECT TERMS vC02,1f ne an never, if .eRCny and identify by block number)

FIELD I GROUP I SUB. OR. Switch-level simulation, timing simulation, NMOS circuits,

delay operation, graph algorithm

.96 ASTRACT (Continue ois ovuerse if utcemirny and identify by block number?

This report deals with the development of a fast and accurate simulation tool for very-
1 large-scale integrated (VLSI) circuits consisting of metal-oxide-semiconductor (MOS) transis-
. tors. Such tools are called switch-level timing simulators and they provide adequate infor-

mation on the performance of the circuits with a reasonable expenditure of computation time
* even for very large circuits. The algorithms presented in this thesis can handle only n-
Ichannel MOS(NMOS) circuits, but are easily extendible to handle complementary MOS(CMOS) cir-
- cuits as well.

The algorithms presented in this report have been implemented in a computer program
t called MOSTIM. In all the circuits simulated thus far, MOSTIM provides timing information

with an accuracy of within 10% of that provided by SPICE2, at approximately two orders of
magnitude faster in simulation speed.

12CLOIS.TRISUTIONiAVAILABIL, rY OF ASTRAC. 21. ABSTRACT SECURITY CLASSIF'CATION

,UNCLAS.' ./UNLIMITEO Z SAME AS APT. OTIC USERS Unclassified

'2&NAME CF REFSPONSISLE IOVIOUAL 22. TSLEPHONE NUMBER 22c. OFFICE SYMBOL
(Inciude Area. Code, None

)0 FORM 1473. 33 APR EOITION OF I 1AN 7 ;S CBSCLE T E. Unclassified

" - - i l ~ i i l il..

".W N

SWITCH-LEVEL TIMING SIMULATION
OF MOS VLSI CIRCUITS

BY

VASANT BANGALORE RAO

B.Tech. Indian Institute of Technology, 1980
M.., University of Illinois, 1982

1
%

THESIS ,

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1985

Accession For

NTIS GRA&I
DTIC TAB
Unannounce'd
Just if cition.-.

By
Urbana, Illinois Distribution/

Availahility Codes

A va IL z-, w/o r
Dist Specini

3T

AI L) . ..

SWITrCH LEVEL TIMING SIMUTLATION
OF MOS VLSI CIRCUrTS

Vant Bangalore Rao, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1985

This dissertation deals with the development of a fast and accurate simulation tool for very-

large-scale integrated (VLSI) circuits consisting of metal-oxide-semiconductor (MOS) transistors. Such

tools are called switch-level timing simulators and they provide adequate information on the perfor-

mance of the circuits with a reasonable expenditure of computation time even for very large circuits.

The algorithms presented in this thesis can handle only n-channel MS(NMOS) circuits. but are easily

* extendible to handle complementary MOS (CTMOS) circuits as well.

An INMOS circuit is modeled as a set of nodes connected by transistor switches. Three strengths

and three states are used to represent the signals at the nodes in the circuit. The strengths in decreasing

= order are input, pullu and normal. The three states used are 0, u, and 1, with 0 and 1 representing

the conventional low and high signal values respectively while the u state is used to represent inter-

mediate signal values and sometimes to represent situations of conflict. Each switch is either open,

closed, or in an intermediate state.

The enhancement transistors in the NMOS network are first partitioned into driver and pas

* transistors The NMOS network itself is then partitioned into mnultifunctional blocks (MFB), pas

transistor blocks (PTB), and input sources (SRC). The partitioning is an automatic process that is com-

* pletely transparent to the user and can be performed in linear time. The partitioned blocks are then

ordered for processing so that, whenever possible, a block is scheduled for processing only after all its

inputs have been previously processed. Since this is not possible for blocks forming feedback loops, a

*novel dynamic windowing scheme is used to schedule such blocks.

....

- .* .-.. ., .. *..-.*-..
swr * *L]*****T*MING=SI*UL*TION - "'.

-r l-I 7 .

iv

The blocks in the partitioned network are then simulated at the switch level using graph algo-

rithms, producing so-called :ero-delav ternary signal waveforms. The zero-delay signal transitions are

then delayed by using delay and filtering operators. The characteristics of the delay operator are corn-

puted in a presimulation phase by simulating five different circuit primitives using an accurate circuit

simulator such as SPICE2. These characteristics are stored in a table. During the simulation a circuit

block is mapped onto one of the five primitives and appropriate delay values are obtained by fast table

lookup techniques. Several factors such as block configuration, loading, device geometries, and input

slew rates are taken into account while computing the delay values.

The algorithms presented in this thesis have been implemented in a computer program called

-I MOSTIM. In all the circuits simulated thus far, MOSTIM provides timing information with an accu-

- racy of within 10% of that provided by SPICE2, at approximately two orders of magnitude faster in

simulation speed.

" A.

i ,"

*... ..

v V."..

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and gratitude to Professor Timothy N. Trick, my disser-

tation advisor, for his invaluable guidance and continuing encouragement during the course of my gra-

duate studies. I would also like to thank Professors Ibrahim Hajj and Vijaya Ramachandran for being

members of my dissertation committee and for their support. I wish to thank all the members of the

Circuits and Systems Group at the Coordinated Science Laboratory, Urbana, for many interesting dis-

cussions and helpful suggestions. I am very grateful to Mita Desai for her continued support and

understanding, and also for helping me with the manuscript. I would also like to thank Beth Piver,

Eric Peterson, and Rosemary Wegeng for their help in preparing the manuscript.

Finally, I wish to thank my parents, Indira and Sathyanarayana, for their everlasting love,

encouragement, patience, and support. They have always been a great source of inspiration to me. This

thesis is dedicated to both of them.

This research was supported in part by the Joint Services Electronics Program (U.S Army, U.S.

Navy, and U.S. Air Force) under contract number N00014-79-C-0424, and in part by the IBM Corpora-

tion.

• '' : " i "'-. . . .i i. . . i.'. " '

vi

TABLE OF CONTENTS

CHAPTER Page

1. INTRODUCTION I

2. OVERVIEW OF SIMULATION TECHNIQUES 8

2.1 Analog Simulation _8

- 2.2 Decomposition Techniques for Analog Simulation 10

2.2-1 Tearing Decomposition 12

22.1.1 Tearing of Linear Systems 12

2.2.1.2 Tearing of Nonlinear Systems 14
2.2-2 Relaxation Decomposition 16

2.2.2.1 Relaxation of Linear Systems 16
.22..2 Relaxation of Nonlinear Systems 18

2.2.2.3 Relaxation of Differential Equations 21

2.3 Digital Simulation - 24
2.3.1 Gate-level Simulation 25
2.3.2 Switch-level Simulation 31

2.4 Mixed-mode or Hybrid Simulation 37
2.5 Switch-level Timing Simulation 38

3. NETWORK PARTITIONING AND ORDERING 42

3.1 NMOS Network Model 42
3.2 Network Partitioning 46

3.2.1 Review of Graph Theory 47

3.2.2 Driver and Pass Transistors 50
3.2.3 Partitioning Algorithm and Its Complexity 63

3.3 Ordering of Partitioned Blocks for Processing 66

3.3.1 Directed Graphs 68
3.3.2 Presence of Feedback and its Detection 71

3.4 An Example to Illustrate Partitioning and Ordering 80
3.5 Conclusions 90

4. SWITCH-LEVEL SIMULATION 91
4.1 Ternary Signals and Sequences of Transitions 91
4.2 Switch-level Simulation of a Block 97

4.2.1 Simulation of an SRC 98
4.2.2 Simulation of an MFB 99
4.2.3 Simulation of a PTB 116

4.3 Conclusions 127

- h . .-. - A - -

vii

,-..

5. DELAY AND FILTERING OPERATIONS 129
5.1 Computation of Delay Functions for Standard Primitives 130
5.2 Delay Functions for Nonstandard Primitives _ 139

5.3 Delay Operator for MFB's and PTB's . 143
5.4 Filtering Operation 154

6. SLIMLLATING STRONGLY CONNECTED COMPONENTS 157
6.1 Waveform Relaxation Versus Time-point Relaxation 157
6.2 Event-driven Dynamic Windowing Algorithm 161

7. MOSTIM: MPLEME NTATION AND PERFORMANCE 167

8. CONCLUSIONS 197

APPENDIX I: PLOTS OF DELAY FUNCTIONS 202

APPENDIX II: MINIMUM FEEDBACK ARC SETS FOR DIRECTED GRAPHS 215

REFERENCES 230

VITA 238

r

--: if

,°

..

Io

CHAPTER I

UITRODUJCTION
0.

The design of an electronic circuit, traditionally, started with the designer who, with a mental

picture, translated his or her ideas into the form of a circuit schematic. This step relied heavily on the

human designer's intuition, past experience, and knowledge to make reasonable approximations. This

S-was followed by the *breadboarding" phase in which an actual prototype of the circuit was constructed

. - from discrete components interconnected by external wires and was tested. The performance of the cir-

cuit, if not found satisfactory, was then improved by adjusting the circuit element values in a some-

what trial-and-error fashion.

The advent of integrated circuits, however, has greatly changed the picture. There are several

* steps involved in the design of a very large-scale integrated (VLSI) circuit, which may consist of

several hundreds of thousands of components, mainly transistors. The circuit designer first obtains a

very high-level functional description of the circuit based on specifications provided by the user. The

synthesis, often called the top-down process, translates this high-level description into various levels

including the register level, the transistor level (or electrical level) etc. and terminates at the physical

mask-level, ie. , the actual layout of the patterns of metal, semiconductor, and insulating material by

which the components and the interconnections are achieved. This is followed by the design verifica-

tion, or the bottom-up process, wherein a software tool called an extractor is first used to obtain a cir-

. cuit level (or transistor level) description from the physical layout. The breadboarding phase is

- replaced by using a simulation tool to predict the performance of the circuit which is then compared

with the user's specifications, thus completing the so-called design loop. If the performance is not satis-

factory, certain changes are made and the whole process is then repeated. The total time spent in the

.. .

• , •

.. '

.. --- . . .5 '

2

design loop is usually referred to as the turn-around time.

The main objective of the VLSI circuit designer is to obtain designs with as low a turn-around

time as possible. Computer-aided design tools have become virtually indispensable at various steps in

the design process to perform tasks which would otherwise take a very long time if they were done by

human beings. Using silicon compilers can speed up the top-down synthesis process considerably since

they produce the mask level description, straight away, from the functional description without any

human intervention. Certain software tools known as design rule checkers (DRC) and electrical rule

* checkers (ERC) are also used. These perform the rather mundane tasks of checking to see if the layout

satisfies all the design rules of the technology and whether there are any topological faults from the

* electrical point of view such as a floating node, and a short between power and ground. There is, how-

ever, a bottleneck in speeding up the bottom-up design verification process which is in the simulation

of the electrical behavior of the circuit. This bottleneck is due to the unavailability of a simulation

tool that is capable of accurately predicting the performance of an entire VLSI circuit at a reasonable

cost. The accuracy of a simulator is important, since otherwise the integrated circuit which is fabri-

cated and tested might turn out to perform rather unsatisfactorily. For large circuits (typically of the

- kind in today's VLSI technology), the speed of simulation is equally important so that the entire circuit

can be simulated in a reasonably small amount of computation time. However, as we shall see in

Chapter 2 of this thesis, speed and accuracy of a simulator are often conflicting requirements among

existing simulation tools.

In this dissertation we will be primarily concerned with providing a fast and accurate simulation

*. tool to a VLSI circuit designer which gives adequate information on the performance of the circuit

* with a reasonable expenditure of computation time even for very large circuits. In Chapter 2 of this

thesis we will review some of the existing simulators for integrated circuits and classify them into two

distinct categories, namely, analog simulators and digital simulators. Analog simulators treat an elec-

tronic circuit as a continuous dynamical system with electrical signals such as voltages and currents.

....i*mmld did''dJ -- l'l''-)[
' ' mi m

mmi mm mm-' " *...~** ".'.*** . ,"."

3

Digital simulators, on the other hand, view the circuit as a digital network with signals occupying

discrete states such as low (0) and high (1). For small circuit blocks where analog voltage levels are

critical in evaluating circuit performance, or where strong coupling exists, analog circuit simulators

such as SPICE2 [1] and ASTAP [21 can be used to predict the performance of the circuit very accurately.

As the size of the circuit (number of components) increases, however, using these simulators is no longer

,* cost-effective. Several decomposition techniques have been used to speed up their performance and

have resulted in a new generation of analog simulators [3-15] which are, however, cost-effective for cir-

cuits limited to at most ten thousand devices.

The existing digital simulators [13-27] can be further divided into Boolean gate-level [13-18] and

switch-level 119-27] simulators. In the Boolean gate model a circuit consists of a set of logic gates con-

nected by unidirectional memoryless wires. The logic gates compute Boolean functions of their input

signals and transmit these values along the vires to the inputs of other gates. Each gate input has a

unique signal source. Information is only stored in the feedback paths of sequential circuits. The

Boolean gate model, however, cannot describe some of the newer technologies currently used in VLSI

* circuit design, especially circuits with Metal-Oxide-Semiconductor (MOS) transistors. The MOS transis-

tor can be treated as a voltage-controlled switch with three terminals: drain, gate, and source. The sig-

nal at the gate terminal controls the connection between drain and source terminals. Therefore, some

S"MOS pass transistor networks can implement combinational logic in ways that resemble relay contact

networks more closely than conventional logic gate networks. Dynamic memories using MOS devices

can store information without feedback paths by exploiting the capacitance of the wires (interconnect

region) and the gates of the transistors attached to them. A variety of bus structures can provide mul-

tidirectional, multipoint communication. Thus, MOS circuits consist of bidirectional switching ele-

ments connected by bidirectional wires with memory due to the interconnect and device capacitances

and hence cannot be modeled accurately by Boolean gate-level simulators.

= Z7

4

A new class of digital simulators has recently emerged specifically for simulating MOS VLSI cir-

cuits. These switch-level [19-271 simulators model an MOS circuit as a set of nodes connected by

transistor switches. Each node occupies a discrete number of states 0, 1, or X for the intermediate or

unknown state and each switch is either open. closed, or in an intermediate or unknown state. These

simulators can handle a variety of MOS configurations such as logic gates, pass transistors, busses, static

and dynamic memory. Digital simulators, in general, operate at sufficient speeds to test entire VLSJ

systems, since the circuit behavior is modeled at a logical rather than a detailed electrical level. How-

ever, these simulators do not model the dynamics of the circuits properly and are often useful only in

predicting steady-state responses of the signals. Analog simulators, on the other hand, predict both

steady-state and transient responses fairly accurately, if the device models used are accurate, but are

cost-effective only for circuits with less than a few thousand components, which are considered small

in the present day VLSI technology.

The algorithms presented in this thesis have led to the development of a switch-level timing

simulator for MOS VLSI circuits. This simulator, MOSTIM, is an attempt to bridge the gap between

analog and digital simulators. It performs simulations at a switch level and hence runs at speeds close

to that of digital simulators. Further, it uses a delay operator to delay signal transitions accurately and

hence provides the timing accuracy comparable to that of analog simulators.

MOSTIM uses 3 strengths and 3 states to represent node signal values. The strengths in decreasing

order are input, pullup, and normaL The three states used are 0, u, and 1, with 0 and 1 representing

the conventional low and high signal values respectively while the u state is used to represent inter-

mediate signal values and sometimes to represent situations of conflict. The input to MOSTIM is a

transistor-level circuit description in a SPICE2 input format. The program begins by partitioning the

entire MOS network into several functional blocks. The partitioning is an automatic process that is

completely transparent to the user. The partitioned blocks are then ordered for processing so that,

whenever possible, a block is scheduled for processing only after all its inputs have been previously

...................- -.-.-..- .- - - -- i , ,' - .'° ": ' ' .-' '-: - -: .3 ' i'" -. . .. ' '

processed. Since this is not possible for blocks forming feedback loops, a novel dynamic windowing

scheme is used to schedule such blocks. The blocks are then processed at a switch level producing go-

called zero-delay ternary signal waveforms. These zero-delay waveforms are first delayed suitably by

the delay operator and then filtered to produce realistic waveforms. MOSTIM, at presnt, handles

only n-channel MOS (NMOS) circuits, but the algorithms presented in this dissertation can be easily

extended to complementary MOS (CMOS) circuits as well.

In Chapter 3, the algorithms for partitioning the input network into various blocks and the order-

ing of these blocks for processing are discussed. The input network to MOSTIM is assumed to consist of

voltage sources, NIMOS transistors - both depletion and enhancement types- and a fixed capacitance

from each circuit node to ground. The key to the partitioning strategy is to divide the set of enhance-

* ment transistors into driver transistors and pass transistors. A graph-theoretic algorithm achieves this

* in computation time linear with the number of enhancement devices. The driver transistors are then

grouped together to form multi functional blocks (MFB) and the pass transistors are grouped together to

* form pass transistor blocks (MT). A third type of block called input source (SRC) is created from the

* voltage sources, clocks etc. A directed graph G is then constructed with vertices corresponding to the

various circuit blocks, namely, MNFB's, ?WBs, and SlRC's, and directed arcs describing the interconnec-

tions between them. A modified version of a depth first search known as Tarjan's algorithm (311 is

* used to detect strongly connected components (SCC) in G. The vertices within an SCC correspond to

* blocks forming feedback loops in the original circuit and are collapsed into single vertices thus creating

an acyclic reduced graph 0.The vertices of Gare then placed in topological order for procesing.

The algorithms for the switch-level simulation of multifunctional blocks and pass transistor

blocks are presented in Chapter 4. An MFB is a single output, multiple input, unidirectional block

whose steady-state output is a Boolean function of its inputs. A graphical technique using internal-

node eliminations is used to evaluate the state of the signal at the output, given the input signal states.

No attempt is made to evaluate signals at the internal nodes of the MFB. In the switch level simula-

- . - . . -*- - - - - - -

6

tion of a PTB however, the signal at every node wit) ' the PTB is evaluated. The transistors in a PTB

are modeled as bidirectional switches whose conduction states (i.e., open, closed. or intermediate) are

controlled by the signal at the corresponding gate terminals. A strong node forces its state on a weaker

node connected to it via a path of conducting transistors at any given time instant. The algorithm is

quite similar to the one used in conventional switch level simulators such as MOSSIM [19 except for

the interpretation of the u state (or X state as used in MOSSIM).

The switch-level simulation algorithms described in Chapter 4 generate zero-delay ternary

waveforms for each pull-up node in an MFB and each normal node in a PTB. A delay operator,

described in Chapter 5, is used to delay pairs of complete transitions (Le, O-'u followed by u-l, or

1-u followed by u-O) in the zero-delay waveforms. The delay operator computes appropriate delay

values by taking several parameters into account, such as block configuration, loading, device

geometries, and input slew rates. For NMOS technology, knowing the delay characteristics of five dif-

ferent circuit primitives is sufficient, within reasonable limits of accuracy, to compute delays through

any general MFB or PTB. These five primitives are simulated using an accurate circuit simulator such

as SPICE2 [I1 or SLATE [31 for various device and circuit parameters, and the delay values are

extracted and stored in a delay table. This can be done in a presimulation phase. During simulation,

- MOSTLM then maps an MFB or a PTB into one of the five primitives and obtains the appropriate delay

value through fast table lookup methods, and interpolation when necessary. Clearly, the delay values

are functions of various circuit and device parameters. However, using time scaling techniques, it will

be shown that, only one parameter, namely, the input slew rate, is sufficient for determining delays in

_ three of the five primitives. The effect of the rest of the parameters can be accounted for by using cer-

tain scale factors. For the remaining two primitives, however, there are three parameters necesry to

* obtain delay values. Thus, time scaling helps reduce the size of the delay tables considerably.

In Chapter 6 we discuss techniques used to process blocks within an SCC. In order to perform a

switch level simulation of a block (MFB or PTB), the waveforms at the input nodes to the blocks must

*. - ,."

... .. -."

7

necessarily be known. Since this is not possible for blocks within a SCC, these have to be handled

separately. A waveform relaxation technique could be used, wherein the blocks are processed itera-

tively in a predetermined order with unknown input waveforms initially relaxed and output

waveforms constantly updated. Several drawbacks of this technique will be discussed. A new

dynamic windowing method which overcomes most of these drawbacks will be presented. In principle,

this new scheme is quite similar to the classical event-driven time-wheel approach used in conventional

logic simulators [13,191 except that events take place during intervals of time instead of occurring

instantaneously. The entire time interval of analysis is automatically partitioned into variable size

windows such that the signal at each node in each block within the SCC occupies a steady state (ie, 0

or 1) at the window boundaries. Associated with each window is a set of blocks scheduled for process-

* ing during that window. This new scheme does not require an a priori ordering of blocks within the

• -SCC, and is also seen to take less computation time and less storage.

A number of N.MOS circuits have been simulated using MOSTIM. The performance is discussed

in Chapter 7. In all the circuits simulated thus far, MOSTIM provides timing information with an ,

*.- accuracy of within 10% of that provided by SPICE2 [1, at approximately two orders of magnitude fas-

* .ter in simulation speed. The performance is also compared with some of the recent attempts made in

switch level timing simulation such as RSIM [26]. Finally, in Chapter 8, we provide some conclusions

along with some suggestions for future research.

..

CHAPTER 2

OVERVIEW OF SlIMULATION TECHNIQUES

Simulation plays a major role in the process of designing an integrated electronic circuit. By using

a simulator, the circuit designer can evaluate the performance of the design before going into the expen-

sive and time-consuming manufacturing process. There are two basic approaches to simulating an

integrated electronic circuit. The first, and more traditional approach is to treat the circuit as a con-

tinuous dynamical system and obtain a set of nonlinear algebraic-differential equations with electrical

variables such as voltage, current, and charge to describe its behavior. The objective of an analog simu-

lator is to solve this set of equations, numerically, and obtain the detailed waveforms at various nodes

in the circuit. An alternate approach is to view the circuit as a digital system in which the signals

occupy discrete states. Since the majority of VL-SI circuits are primarily digital in nature, digital simu-

lators are often successful in predicting steady-state responses in these circuits. Analog simulators are

r.o

generally quite accurate in evaluating the performance of circuits, but are not fast enough to handle

entire VLSI circuits. Digital simulators, on the other hand, are able to simulate very large circuits, but,

unfortunately, are not accurate in modeling the dynamics in these circuits.

2.1 Analog Simulationi

For small circuit blocks where analog voltage levels are critical to determine circuit performance.

or where strong coupling exists. circuit simulators such as SPICE2 (11 and ASTAP [21 can be used to pro-

vide accurate information on the behavior of the circuit. These simulators will be referred to as stan-

dard circtit simulators. These are general purpose simulators in that they can handle almost any type

of circuit element such as resistors, capacitors, inductors (both self and mutual), voltage and current
C**.TE**2*,..

C.o

- .,. . - . . - - - -i-'?--.-;.-

9.

sources (independent and controlled), nonlinear devices (transistors, diodes, etc.), and transmission lines.

They can also perform many types of analyses such as dc analysis, ac (or small-signal) analysis, noise

analysis, and transient or time-domain analysis. In present day IC design, however, standard circuit

simulators are primarily used for time-domain transient analysis, which happens to be the most compli-

cated and expensive type of analysis.

The transient analysis of a circuit involves the solution of a system of nonlinear algebraic-

differential equations describing the analog behavior of the circuit. Standard circuit simulation

involves, essentially, three basic numerical methods in solving the circuit equations:

1. An implicit integration method which approximates the time-derivative operator in the system of

differential equations with a divided difference operator. The circuit equations are thus

* - transformed into a sequence of nonlinear algebraic difference equations.

i 2. The Newton-Raphson algorithm for solving the sequence of nonlinear equations, iteratively, by

generating a set of linear algebraic equations.

3. The Gaussian elimination method for finding the solution of a system of linear algebraic equa-

tions.

The circuit simulator SPICE2 uses the Modified Nodal Method (MNA) [32) to formulate the cir-

cuit equations, whereas ASTAP uses the Sparse Tableau [33] approach. In either case, the time Tf spent

.9i by the simulator to formulate the circuit equations grows almost linearly with the size of the circuit.

- .However, the time T, required to solve these equations increases at a faster rate and rapidly becomes the

•- dominant cost of analysis. Moreover, most of T, is spent in the Gaussian elimination process which

involves the solution of a matrix equation of the form Ax=b, where A is the circuit Jacobian matrix, x

is a vector of unknown circuit variables and b is a known source vector. In a typical large scale circuit,

the matrix A is usually very sparse (i.e., it has very few nonzero elements). Hence, the Gaussian elimi-

nation in standard circuit simulators is usually implemented by using sparse matrix methods [341 It is

important to exploit the sparsity of the matrix A, since the computational time required to perform

• .°* • ...- • V..-*.-. • • -. o.....O . ..° °-..o..-..• ,.

Gaussian elimination of a full nxn matrix, using Crout's algorithm [341 is proportional to n3 (theoreti-

cally, better algorithms exist with smaller exponents [67]). In digital circuits, however, using sparse

matrix techniques [1] the Gaussian elimination has been empirically shown to take computational time

that is, on an average, proportional to n*, where aE[1.2,1.51-

SPICE2 and ASTAP have proven to be reliable and effective when the size of the circuit, meas-

ured by the number of components, is small. As the size of the circuit increases, the computer time and

storage space used up by these simulators increase rapidly despite the use of sparse matrix techniques.

In particular, the time T, required to solve the circuit equations exhibits a nonlinear increase with cir-

cuit size. In SPICE2, Ts is less than 10% of the total computation time for a circuit with less than 30

nodes but reaches almost half the total time for a circuit with a thousand nodes [131 The problem is

further aggravated by the fact that for larger circuits, more information is generally needed to verify

the circuit performance, and hence, longer simulation times are required. It has been estimated that the

simulation of a circuit with around 10,000 MOS transistors from t-0 to t-10OOns, using SPICE2 on an

IBM 370/168 Computer, would take at least 30 hours of CPU-time [551 Since 30 hours is clearlv

prohibitive, the cost-effective use of standard circuit simulators is limited to circuits, with less than a

few hundred components, which are considered small in the present day VLSI technology.

2.2 Decomposition Techniques for Analog Simulation

Several attempts have been made to speed up the performance of standard circuit simulators.

This resulted in the development of a variety of analog simulators such as SLATE [3 MACRO [41,

MOTIS [5] MOTIS-C [61 PREMOS [71, RELAX. [101, SPLICE [13] DIANA [141, and SAMSON [15.

These nonstandard analog simulators can be meaningfully classified according to the decomposition

techniques employed by them, in order to achieve the improvement in speed. Decomposition refers to

any technique that subdivides the original problem into several subproblems. Each subproblem

corresponds to solving only a subset of the original system equations for a subset of system variables.

'I..

Decomposition can be applied at any of the three levels of the standard circuit simulation approach.

namely, the differential equation level (or sometimes called the time level), the nonlinear algebraic

equation level, or the linear algebraic equation level. The original system of equations is viewed by a

decomposition technique, no matter at what level it is applied, as a composition of several subsystems

with interactions among them. Each subsystem is usually solved in a manner similar to the conven-

tional techniques used in standard circuit simulators. Hence, the main feature of a decomposition tech-

nique is the handling of the interactions between the various subsystems.

The majority of large integrated circuits are digital in nature, and hence, several properties of

such circuits can be exploited during the simulation process. Digital circuits tend to be structurally reg-

ular and repetitive. A typical large digital circuit is usually composed of a number of small subcir-

cuits, normally referred to as logic gates. Several of these logic gates are functionally and topologically

the same, and thus analyzing one is very similar to analyzing the others. Furthermore, only a small

fraction of the circuit variables is actively changing state at any time instant in a large digital circuit.

For circuits containing over 1000 transistors, typically more than 8076 of the circuit variables are

steady (not changing) at any given time instant. As the size of the circuit increases, the fraction of

-.'. active (changing) circuit variables tends to fall even further. This inactivity, or latency, in a large

digital network can be exploited by an analog simulator in a number of ways. The main advantages in

using decomposition techniques are

1. The structural regularity and repetitivity of the subsystems can be exploited.

2. Incorporating bypassing schemes at several levels to exploit the latency of a subsystem can result

in additional savings in computing time.

3. Decomposition techniques are suitable for computers with parallel or pipeline architectures since

two or more subsystems can be solved concurrently.

There are two different approaches to achieving system decomposition, namely, tearing and relax-

ation [361. These two approaches are characterized by different ways of updating the interactions

-~- - -~- *- , wr } . v - w w' -" =

12

between subsystems and by different numerical properties. The tearing approach aims to retain the

same numerical convergence and stability properties as of the standard circuit simulation approach.

while the relaxation methods (also called temporal or indirect methods) have completely different

numerical properties.

2.2.1 Tearing Decomposition

Solving a network by tearing decomposition is an approach in which a part of the network is torn

away, so that the remaining subnetworks are disconnected and thus can be analyzed independently.

The solutions of the individual subnetworks are then combined with those of the torn-away part of the

network in order to obtain the solution of the entire network. There are basically two types of tearing,

namely, node-tearing and branch-tearing depending upon whether circuit nodes or branches are

removed to tear down the network. The program SLATE [3] utilizes the node-tearing approach at the

linear equation level. The LU-factorization of the original Jacobian matrix during the standard Gaus-

sian elimination process is performed by cleverly exploiting the block structure of the matrix reordered

in a special form, thus achieving savings in computation time. Another approach is to decompose the

system at the nonlinear equation level by introducing additional iteration loops in the standard

Newton's method. This multilevel Newton method is used in MACRO [4] Tearing methods, in gen-

eral. are well-suited for parallel processing and retain the numerical convergence and stability proper-

ties of the standard approach.

2.2. 1.1 Tearing of Linear Systems

At the linear equation level tearing is used to solve a set of linear algebraic equations of the form

Ax=b (2.1)

where A is an nXn matrix, x is an unknown vector and b is a known vector in Rn.

. . - -. .

13

The standard Gaussian elimination process involves the LU-factorization of A such that A=LU.

where L and U are lower triangular and upper triangular matrices respectively. In general, we have

PA-LU, where P is a permutation matrix. This is followed by a forward substitution step wherein a

temporary vector y is first computed from

Lyfb (2.2)

after which x is computed in the backward substitution step from

Ux=y. (2.3)

In case the permutation matrix P is not the identity, then we can replace the known vector b by the

vector Pb in Equation (2.2). It must also be noted that Equations (2.2) and (2.3) can be solved without

" .explicitly computing matrix inverses since the corresponding matrices are triangular. However, as the

* size of the matrix, n3, becomes large, even Gaussian elimination turns out to be prohibitively expensive.

Algebraically, tearing can be considered as reordering the network variables such that Equation

(2.1) has a bordered block diagonal (BBD) form

T jT w jsl (2.4)

where w E Rk is the vector of tearing variables and v E Rm is the vector of the remaining unknown

variables. T is a kxk tearing matrix corresponding to the variables in w. Removal of the variables in

* w tears the network into it independent subnetworks. D is an mXm block diagonal matrix

S.corresponding to these subnetworks. Assuming that the it subnetwork has m i variables and the

"" mixm i matrix corresponding to this is D, we then get the following partition:

D2 ~ V 2 Y
u V a".'- DVAS YP ,

""" Further p = [pT pT. PT and QT = [QQ? .. QT where Pi and Qj are mixk matrices"-

14

constituting the border.

The solution strategy is to first eliminate the variables v from the system resulting in the follow-

ing reduced subsystem: . ._

(T - QTD-iP)w = 8 - QTD-iy. (2.5)

Solving (2.5) gives the tearing variables w, after which the it subnetwork can be solved to yield

vi as

Div i -- - Piw (2.6)

for each i =1,2,.

It must be noted that both Equations (2.5) and (2.6) represent subproblems much smaller than the

original problem since, typically, k <<n and m i <<n. Further, these equations can be solved without

actually inverting any of the matrices involved. The details are given in [35] and will not be discussed

here. Parallel processors could be employed to solve Equation (2.6) for different subnetworks. Thus

tearing aids in saving computation time over Gaussian elimination of a rather large system of linear

equations.

2.2.1.2 Tearing of Nonlinear Systems

At the nonlinear equation level, tearing is applied in the multilevel Newton iteration procedure

used in MACRO [4. In this approach the circuit is assumed to be described in a hierarchical fashion.

In a two-level hierarchy, a circuit is composed of certain functional units, called blocks. Each block is a

small subnetwork consisting of basic circuit elements such as transistors, resistors, and capacitors. The

circuit variables in a block are divided into two categories, namely, endogenous - those that interact

only with variables inside the block, and exogenous - those that also interact with variables outside the

block. Let u E Rk denote the exogenous variables for a subcircuit. The endogenous variables are, in

turn, partitioned into two sets. The first set, called the output variables, and denoted by y E Rk, are in

* -- . •

WV " -= .. ,m~ t L'' ml.m. " .* ~

15

I-I correspondence with the exogenous variables. For example, if the exogenous variables are chosen to

be node voltages, then the set of output variables will be branch currents entering the subcircuit from

these nodes. The second set, denoted by x E Rm. is the set of internal variables.

The static behavior of each subcircuit can be determined by solving a system of equations of the

form

H(uxy) - 0. (2.7)

Given u. the interaction of the subcircuit with the rest of the circuit is completely described by y.

Thus Equation (2.7) can be solved to yield an exact macromodel for the subcircuit, which is a mapping

from u to y. Therefore the original circuit can be treated as composed of black boxes whose input-

output behavior is modeled by macromodels, leading to the network equations of the form

Fluy,w) =0 (2.8)

* where w E RP is a vector of network variables not interacting with any of the subcircuits.

*"i The two-level Newton-Rapison algorithm can then be described as follows. Each subcircuit hav-

ing equations of the form of Equation (2.7) is first solved using a Newton-Raphson iterative technique

yielding y as a function of u denoted by y = G(u). The next level of Newton-Raphson iterations is

applied to Equation (2.8) with y - G(u) to yield the complete solution to the network.

The two-level technique can easily be extended to many levels of hierarchy in the circuit and is

. extremely useful if circuits are described in a multilevel hierarchical fashion. The main advantage in

using this approach is that, at each level, the Newton-Raphson algorithm is applied only to a relatively

*" small number of equations, thus gaining computational speed. Like other tearing methods, this scheme

S-.permits individual subcircuits to be processed in parallel while still retaining the essential properties of

" the corresponding standard technique, which in this case is the quadratic convergence of the Newton-

Raphson method.

.,*% 5.' . ' . .

16

2.2.2 Relaxation Decomposition

Relaxation or temporal decomposition techniques are used by several nonstandard analog simula-

tors such as MOTIS [5, SPLICE [131, RELAX [101 and SAMSON [15], to achieve higher computational . -

speeds. Relaxation can also be applied at any of the three levels of the standard circuit simulation

approach, namely, the linear equation level, the nonlinear equation level, and the differential equation

level These methods are characterized, however, by completely different numerical convergence and

stability properties.

2.2.2.1 Relaxation of Linear Systems

As in Section 2.2.1.1, suppose, once again, that the linear system of equations to be solved is of the

form Ax b where x, b E RI , and A is an nxn matrix. There are two well-known relaxation tech-

niques that could be used to solve the above system iteratively. These are the Gauss-Jacobi method and

the Gaus-Seidel method. Both these methods are iterative in nature, as are relaxation methods in gen-

eral, and generate a sequence of vectors x°, x', xz, .--, xi, x + , -.+ where x° is some initial guess.

This sequence converges to a solution x" for any initial guess, provided some conditions involving the

matrix A are met. In this case the iterations stop when the error 8 i+' I - xi II < E where e>O

is preasigned.

The relaxation begins by partitioning A as

A = L+D+U (2.9)

where L and U are strictly lower and strictly upper triangular matrices and D is a purely diagonal

matrix. Thus the original system of equations can written as

Dx =b - Lx - Ux. (2.10)

The Gauss-Jacobi method then computes xi+ l from xi as

. -:-.
:.-:

..................................- . " ..

17

xi+ .D-'ib - (L+U)xi) (2.11)

while the Gauss-Seidel computes

xi+I = D-(b - Lx'+1 - Ux'). (2.12)

More precisely. Gauss-Seidel computes the j component of xi+1 as j is incremented from I to n as fol-

lows:

j = Dfj -(bj - Y - -i+ Ujkxk) (2.12a)
k=I k-j+l

since L = 0 for k.j and U = 0 for k j by definition.

From Equation (2.11) one gets

(xi~ - xi) = -D-i(L+UXx- x'i-)

ad hence, for the Gauss-Jacobi method

[8i IID-'(L+U)II 8' (2.13)

by definition of the induced norm of a matrix [381 Similarly, for the Gauss-Seidel method one gets

~8i +' 4 II(L+D)-'UII 8i (2.14)

In either case, we have 8+' 4, IIMI 8i where M denotes, generically, the matrices involved in Equa-

tions (2.13) and (2.14). From the above equations, it can be shown that these relaxation methods have

the following properties:

a) The iterations converge (ie. 8i--O as i-o) for any initial guess x° if and only if I X(M)I < 1 for

each eigenvalue X of M.

b) The iteration converges in one step if the rows and columns of A are permuted such that U is

identically zero.

c) Speed of convergence, in most cases, is improved if A is permuted into nearly lower triangular

form.

JAL

18

d In general. convergence depends on the numerical properties of L, D, and U. Convergence is typi-

cally rapid for the first few iterations, and then gets progressively slower. The asymptotic rate of

convergence is linear.

e) The speed of convergence of the Gauss-Seidel method is generally faster than that of the Gauss-

Jacobi method.

The advantage of the Gauss-Seidel method is that at each iteration only a triangular system of

equations has to be solved. Moreover, considerable improvement in speed of convergence can usually be

achieved if A can be permuted into a form which is nearly triangular. The disadvantage of this

method is its weak convergence. In some cases, if convergence is achieved, it is only linear. Thus if M

has an eigenvalue of modulus close to 1, it may take many iterations to reduce the error by an order of

magnitude. If A is diagonally dominant, which implies that all eigenvalues of M have modulus

strictly less than 1, then convergence is guaranteed.

2.2.2.2 Relaxation of Nonlinear Systems

Relaxation methods to solve nonlinear difference equations are used in a class of analog simula-

tors, known as timing simulators [5-81 The algorithms used in these simulators depart radically from

the methods used in standard circuit simulators in a number of ways ; some of which are

1) The types of networks are restricted to circuits containing only MOS transistors and lumped capa-

citors from each node to ground.

2) The nonlinear device characteristics, in most cases, are stored in tables, and are not evaluated

analytically during simulation.

3) Both sparse Gaussian Elimination and conventional Newton-Raphson techniques are discarded as

solution methods and some accuracy may be sacrificed in the quest for speed.

19

The first timing simulator to be implemented was MOTIS [1], which, in fact, is still considered a

landmark in the Computer-Aided Design (CAD) area. The original MOTIS, as implemented, had some

problems with accuracy, convergence, and coupling such as floating capacitors (i.e.. a capacitor across

two nodes). Several simulators such as MOTIS-C [61 SPLICE [13]. and MOTIS-I [7]. were implemented

subsequently to overcome some of these problems. To elucidate some of the ideas used in these simula-

tors, assume that the nodal equations of an MOS network are of the form

Ci + J(v) = 0 (2.15)

where v E RW is the vector of node voltages as a function of time, + is its time derivative, C is the

capacitance matrix, and J(v) is the vector of currents feeding the capacitors. Using the Backward Euler

method to discretize the time derivative operator, we get

in= (vn+l - vn)/hn (2.16)

where vk is the value of v computed at time tk, and hk = tk+i - tk . Assuming that the values of v

have been computed at time points to, t1 , " *, tn, we now develop the procedure to evaluate v "+'

'-* Substituting Equation (2.16) into Equation (2.15) and denoting the unknown variable v1+ by y, we

get

Cy + hXJly) - Cv- =0, (2.17)

* which, in general, can be rewritten as a system of nonlinear equations of the form

g1(Y 1,Y 2, ' Yim) = 0
g2(YY," '',YW) = 0

(2.18)

gm(YIuy 2, - ,y.) = 0

The relaxation techniques used to solve the above equations are often termed as point-wise relaxa-

tion methods as opposed to waveform relaxation methods [9]. wherein the relaxation is applied at the

differential equations level itself. The point-wise relaxation techniques solve equations in (2.18) by

20

sweeping one equation at a time and solving for one variable at a time while relaxing the remaining

variables to their previous values. The process is repeated until the unknown variables converge or the

iteration count exceeds a preset value. In MOTIS a Gauss-Jacobi-like scheme is used to solve equations

in (2.18) approximately by obtaining yi from the following scalar equation:

g,(VV, -,v nz,y,v 1 .
- - ,v n) - 0 (2.19)

It must be pointed out that the above nonlinear scalar equation could be solved using a Newton-

Raphson iterative procedure. In MOTIS, however, the solution is taken to be the value obtained after

the first iteration itself. Furthermore, the values of yi obtained after the first sweep of the equations

in (2.18) are taken to be the values of vi"+' and, once again, the iterations are not carried out until con-

vergence. Thus the algorithms in MOTIS compute a vector y which solves the equations in (2.18)

approximately, and sets vn+ - y. These approximations are justified when sufficiently small time

steps are taken to discretize the equations in (2.17).

The MOTIS-C program [61 modifies the procedure used in MOTIS by using a Gauss-Seidel-like

approach, which computes yi from the following equation:

g1(vl+ivn+1, -- , ,y,v, ,v.) = 0. (2.20)

Once again, the above nonlinear scalar equation is solved only approximately by stopping after a single

Newton-Raphson step. Furthermore, only a single relaxation sweep is taken through the equations in

(2.18). In SPUCE [13] this approach is modified by repeatedly sweeping through the equations in

(2.18) until convergence is achieved or until the number of iterations equations exceeds an a priori

bound, in which case, the time step h. is reduced and the process is repeated. The advantage of using a

Gauss-Seidel-like approach over a Gauss-Jacobi-type approach used in MOTIS, is that, usually, the

Gauss-Seidel iterations converge more rapidly.

The program PREMOS (8] uses a modified Gauss-Seidel predictor algorithm for the solution of

equations in (2.18). In this approach, while solving the ith equation for the variable y1, the previous

21

variables are updated, i.e., yj =vio"' for j<i. while the variables with j>i are predicted by

Yj = vA + (v--viA-)h,_i/hn-2. Among all the various time-point relaxation methods discussed

above, the Gauss-Seidel, with prediction, is seen to perform the best, provided sufficiently small time-

steps are taken. Also, experience with SPLICE [13] and MOTIS [5] has shown that repeated iteration

sweeps are required in order to achieve accuracy. The convergence and stability properties of these

methods are studied in some detail in [361

2.2.2.3 Relaxation of Differential Equations

In this section we discuss a technique in which relaxation is applied directly to the system of non-

linear algebraic-differential equations describing the circuit. As a result, the system is decomposed into

several decoupled subsystems of nonlinear algebraic-differential equations, each of which can then be

solved using standard techniques, namely, stiffly stable, implicit numerical integration methods,

. Newton-Raphson iterations, and sparse Gaussian elimination. Furthermore, this type of decomposition

"" allows the latency of the subsystems to be exploited in the most natural way. This relaxation tech-

nique is called the Waveform Relaxation Method (WRM) [9] and is used in the simulator RELAX [101

In order to describe the WRM process, consider the nonlinear algebraic-differential equations

describing the behavior of any general circuit to be of the form

f(i(t),x(t)u(t)) = 0 (2.21 a)

E(x() - xo) = 0 (2.21b)

* • where t E [0,T] is the independent time variable, x(t)ERP is the vector of unknown variables at time

t, i(t) is the time derivative of x at time t, u(t)ER r is the vector of input variables at time t, xERP is"

the given initial value of x, f: RPXRPXRr"-R P is a continuous function, and EERnXp is a matrix of

*. rank ni<p, such that Ey(t) is the state of the circuit at time t. Alternatively, the vector function x(t),

t C [0,T] can be treated as an element x in the vector space of bounded functions I[0,T, with the

"°-
S.

0- - - - - - - - - - - - ..o* - - .. - - .

22

norm defined as

IXll = mtO IIx(tI, (2.22) :tE|1,T]' "

where for any z E RP we define

Iil,11, max Izi14 ' j=1.2.. " - - p.-

where zlz 2, - - ,zp are the scalar components of z.

There are two major processes involved in the WRM algorithm for solving the equations in (2.21)

over a given time interval (O,T], namely, the assignment-partition process and the relaxation process.

In the assignment-partition process, each unknown variable is assigned to an equation in which it is

involved. Then the system of equations in (2.21a) is partitioned into m disjoint subsystems of equa-

tions of the following form in which the dependence on time is not explicitly shown:

f 1(i 1,x1 ,d1,u)

f 2(i 2 Ix 2 d 2,u)

=0 (1.23a)

".

E(x(O) - xo) 0 (2.23b)

where, for each i=1,2, - - -m , xijER is the subvector of unknown variables assigned to the ith parti-

tioned subsystem, fi:'.R IX2P-2 XR'-R' is a continuous function, and

di (xI, " " ,Z-..Xi+, xwil , 1 , """i-.. i+V " " " Ii.) T.

For the i subsystem, . i is the vector of endogenous variables, while xj with jadi, are the vectors

of exogenous variables. If, for each i - 1,2, • •m, the vector di is treated as an input to the i sub-

system, then clearly, the solutions of the equations in (2.23a) can be obtained by solving the m subsys-

tems independently. Therefore, the vector di is called the decoupling vector for the ith subsystem.

The relaxation process starts with an initial guess of the waveforms for each unknown variable

and solves the equations in (2.23) iteratively. During each iteration, each subsystem is solved for its

................

23

endogenous variables for the entire time interval [0,T] by using approximated waveforms for its decou-

pling vectors. If we use the superscript k to denote vectors obtained during the kt iteration, then the

WRIM algorithm can be described as starting with an initial guess of waveforms x0(t) : tE[0,T] such

that x(O) = xO and sweeping through the equations in (2.23a) one by one such that during the kth

iteration, the waveforms xi(t)* t E[0,T] are obtained by solving

fi(iixixk,dik,u) = 0 (2.24a)

Ej(xjk(O) - xio) = 0 (2.24b)

where, if Gauss-Seidel relaxation is used, then the decoupling vectors are taken as

d (xk, k .. k-, k --I .k .k-1 -k-1

or. if Gauss-Jacobi relaxation is used, then

AM 'x- 'x+1 A_dlk -,fk--, ,,k-n * *k-1 * -l .k-1 . k-1 .k-i."
',(x '... xji I ,Xll j "1, m ,x Ij x1 , , ,''xi-, ,xil ,"..X

" The iterations stop when the error 8k -lxk - k111 becomes sufficiently small, where the norm of

the vector of waveforms is defined in Equation (2.22) above.

In contrast to the conditions for convergence of point wise relaxation methods discussed in the

previous sections, it has been shown by Lelarasmee [9] that the conditions for convergence of the

waveform relaxation method are fairly mild. First, the circuit Equations (2.21a) and (2.21b) are

transformed into a canonical form so that the error after the kth iteration can be expressed as a func-

tion of the error after the previous iteration in the form of a contraction mapping. If the initial

waveform guesses and the inputs are all piecewise continuous, and the canonical functions are globally

Lipschitz continuous and contractive, then it is shown in [9] that uniform convergence is guaranteed

for the WRM algorithm under the norm defined in Equation (2.22). The convergence, however, is

linear as in other relaxation methods.

In spite of the surprisingly mild conditions for convergence which are easily satisfied by most

practical electronic circuits, the WRM procedure implemented in simulators such as RELAX [10] and

o2
..............

.~

24

RELAX2 [11] suffers from certain drawbacks. The main drawback is that if fairly strong coupling

exists between the various partitioned subsystems, as in circuits with logic feedback loops such as finite

state machines, asynchronous sequential circuits, and ring oscillators, the number of iterations required

f or convergence may be prohibitively large and also proportional to the length of the interval of

analysis. Some of the drawbacks have been overcome in RELAX2.1 [12], wherein the time interval

[OT is partitioned into certain slots or windows and the subsystems are analyzed only for the duration

of a present window before moving on to the next window, and so on. However, it has been shown in

[37] that, in the case of stiff systems where the coupling among the subsystems causes the stiffness, the

sizes of the windows have to be reduced considerably in order to keep the iteration count during a win- -

dow within a prescribed bound. This would then require an extremely large number of windows to

span the entire time interval of analysis.

2.3 Digital Simulation

Digital simulators [13-26] or logic simulators as they are often called, form an important class of

computerized tools for designing very large integrated circuits. These simulators provide a discrete

"on/ off" type analysis of the circuit under tes. Signal values are described by a fairly small number of

discrete levels rather than in a continuous range as is the case in an analog simulator. Through the use

of very simple models for the devices and Boolean arithmetic to perform operations on the discrete sig-

nal values, digital simulators are often capable of economically analyzing circuits containing the

equivalent of over 100k active devices. The dynamics of the circuit are, however, modeled by simply

delaying the various signal transitions between the discrete levels. In most cases a simple, user-defined

rise and fall delay between the input and output of a logic-gate or transistor-group is used. Thus digi-

tal simulators, at best, provide a fairly crude, first-order timing analysis of the circuit under considera-

tion.

S.. -..-............-... ,.................'..........-.-..,.-........ ..-......- ...- .-. ,,-.. ,., ,

25

Digital simulators are useful and popular since most integrated circuits are primarily digital in

nature. The usefulnes of a digital simulator, however, depends greatly on the consistency and accu-

racy with which it can model the logic behavior of a full range of design techniques available to the

designers of integrated circuits. Of course, no digital simulator can model all designs with complete

accuracy, because it does not simulate the detailed analog behavior of the circuit. It should, nonetheless,

provide as close a model as possible within a set of well-defined limitations. As a further requirement,

a digital simulator for VLSI circuits must be efficient enough to simulate entire systems with reason-

able speed. A digital simulator has, as its basis, an abstract model of how digital systems function. This

logical model describes both the structure and the behavior of a system in terms of a set of primitive

elements, a set of interconnections, and a set of rules for operation. For a simulator to accurately and

reliably simulate a system, the logical model must reflect its actual structure and operation. Digital

simulators can be divided into two categories, namely, Boolean gate-level simulators [13-18] and

switch-level simulators [19-27.

2.3.1 Gate-level Simulation

The Boolean logic gate model has formed the theoretical basis for logic design ever since the

advent of electronic logic. In this model a circuit is composed of several logic gates connected by uni-

directional, memoryless wires. The logic gates themselves are collections of transistors and/or other cir-

cuit elements which perform a logic function. A logic gate may be a simple inverter, NAND gate, or

NOR gate, or a more complex functional unit such as flip-flops and registers. The logic gates compute

Boolean functions of their input signals and transmit these values along wires to the inputs of other

gates to which it might be connected. Each gate input has a unique signal source. Information is stored

only in feedback paths of sequential circuits. The Boolean gate model directly implements the well-

known two-valued Boolean algebra and hence has a well-defined specification which can guide the

simulator implementation.

. c

-. . . . -.- - .. -.-. - .--. -. -. 4 -.-.-. .. -. .- - . . . -*..- - ,,.-

26

The unilateral nature of logic gates is fundamental to the operation of gate-level simulators. For

each binary vector at the input nodes of a logic gate, the binary value (e. 0, or 1) at the output is

computed and propagated on to the inputs of other gates that might be connected to it. Due to the iner-

tial elements such as node capacitances present in the circuit, however, a change in the state of the input

to a gate would propagate to the output only after a certain time delay. Simulators which do not

account for this delay can analyze only combinational circuits. Thus, simulators which handle sequen-

tial circuits must estimate the propagational delay through a logic gate and they do so in several ways.

Some simulators operate in the so-called unit delay mode, where all logic gates are assumed to have the

same delay. Unit-delay simulators, however, can verify only the steady-state behavior or the logic

functionality of the digital circuit. In order to provide some kind of timing information, some simula-

tors allow assignable delays where the user can assign specific delays through any of the logic gates

• .used in the simulation. Even in assignable delay simulators, the delay values may only be integer mul-

tiples of a fundamental time quantum, usually referred to as the minimum resolvable time (MRT). For

-. example, the MRT in a certain simulator may be 0.1 ns, in which case a gate delay of 10 units

". represents an effective delay of 1.0 ns.

The difference in propagational delays through different signal paths in a network of logic gates

may sometimes cause undesirable situations, such as static hazards and dynamic hazards. Hazards

[28,29,39,40,64] are situations where it is possible for spurious glitches or spikes to appear in an other-

wise smooth analog waveform at the output of a logic gate. In a sequential circuit, the occurrence of a

glitch could cause the circuit to malfunction. Therefore, the detection of hazards and race conditions

[23,62,65) are very important, and hence, most digital simulators caution the user when they occur.

The detection of hazards is possible by introducing a third state, usually denoted by X, to represent sig-

nal transitions [2&,29,39,40,641 In this dissertation, we do not consider race conditions since we assume

that timing is known, and hence any potential race condition will be resolved according to the timing.

- * **---. .! *.*

27

The Boolean gate model cannot represent many of the design techniques currently used in VLSI

design. This is especially true in the case of MOS VLSI circuits. The MOS pass transistor is often used

to implement combinatorial logic in ways which resemble relay contact switches more closely than

logic gates. These bidirectional elements are difficult to handle using the gate model and are often

approximated by unidirectional gates. Dynamic memory can store information without feedback paths

by exploiting the capacitances of the wires and the gate terminals of the transistors attached to them.

A variety of bus structures is often used to provide multidirectional, multipoint communication.

Hence, most existing digital simulators extend the Boolean gate model in various ways to handle MOS

.'circuits.

Many simulators extend the two-valued logic of Boolean algebra with a third value to represent

* "an unknown or undefined logic level. This X state could indicate an uninitialized signal. a signal held

between two logic thresholds, or a signal in a 0-1 or 1--0 transition. The X state is handled algebrai-

cally by extending the binary Boolean algebra to a ternary or three-valued DeMorgan's algebra [18,391

Thus, even with this extension, many of the desirable mathematical properties of the Boolean gate

model are preserved. The X state implemented this way is also useful in the detection of hazards and

race conditions [23,28,39,40,62,641 Alternatively, some simulators implement the X state by an

enumeration technique i which the simulation is repeated with the nodes in the X state set to all pos-

sible combinations of 0's and l's [411 Nodes that remain in a unique binary state for all combinations

are set to this state, while all others are set to X. To simulate tristate gates and logic busses. some simu-

lators use a fourth state, called the high impedance state, and often denoted by H [161 This H state is

also used sometimes to model dynamic memory by allowing a node to retain its previous logic state if

the outputs of all logic gates connected to the node are at the H level.

As far as simulation is concerned, most gate-level simulators belong to one of two general types.

The first is based on the Huffman logic model [421 as shown in Figure 2.1. In this model, all the feed-

back paths in the network are initially broken resulting in a purely combinatorial network, which is

-. 7

28

PRIMARY COIMINATORL4AL P RMARY
INPUTS NETWOR0 OUTPUTS

(leveled)

SECONDARY SECONDARY
INPUTS OUTPUTS

DELAY ELEMENTS

Figure 2.1 The Huffman logic model for logic analysis

7 - -T 7 - Z-

29

then levelized in terms of signal dependence. The feedback is restored by inserting delay elements

between the secondary outputs and secondary inputs of the combinatorial part of the network. The

analysis begins by applying the input excitations and following paths where the signal states change

through the network to the outputs. The delays are applied to any secondary output change and the

analysis of the combinatorial block begins once again. The process is repeated until the requested input

sequence has been completed. This approach is used in SALOGS [16]1 and is quite efficient for circuits

where relatively few delays are significant or, in other words, for nearly combinational circuits.

The second and more common approach is based on the use of a time queue (TQ) [43] as shown in

Figure 2.2. Each entry in the queue represents a discrete point in simulation time. Time moves ahead

in fixed increments which correspond to consecutive entries in the TQ. Each entry in the queue con-

tains a pointer to a list of events which are to occur at that instant of time. An event is usually

' defined as a change in the logical state of an output node of an element. The element, in this case, may

be a voltage source or a logic gate. The new state may or may not be the same as the state already held

by the output line. If the new state is different from the old one, then all elements whose input lines

* are connected to this output line, called fanout elements, must be processed to see if this change affects

-. their outputs. If an element gets processed at say, time t i, and the input event is found to cause an out-

* i-put event, then the output event is assumed to occur at time ti+k where k>O represents a positive

delay through the logic gate. The fanouts of the output node then get scheduled for processing at time

tj+k. If the state of an output node remains unchanged, then the fanouts are not added to the time

* . queue. This approach is often referred to as a selective trace technique, or an event-driven scheme, or

sometimes even as dynamic leveling. In the case of logic simulation, no penalty in accuracy or stability 7

of analysis is incurred with the use of the selective trace method. One of the advantages of this scheme

is that it allows different gates to have different delays and, moreover, the delay value through a gate

is also allowed to change as the simulation proceeds. This is especially good for MOS logic gates which I

have different delays for rising transitions and falling transitions at the output respectively. Further-

more, the presence of feedback among the logic gates does not complicate the simulation, since the delay

*•- * .- .
..

30J

t-O Events to be processed at
I.present tiae

present time
(PT)

Can schedule their fanouts, to
be processed in the future.

Figure 2-2: The principle of the time queue simulator

31

through a feedback loop would schedule a gate for processing only in the future and never at the

present time in the queue. Several logic simulators such as TEGAS [171 and SPLICE [131 use the TQ

approach successf ull.

Gate-level simulators. however, are not entirely suitable for the digital or logic simulation of

MOS circuits. This is due to the fundamental mismatch between the Boolean gate model and the

behavior of MOS logic circuits. MOS circuits consist of bidirectional switching elements connected by

bidirectional wires with memory (considering the capacitance of the interconnect and of the transistor

gates as contributing to the wr's memory). Hence, the need for a different approach to the digital

modeling and simulation of MOS circuits is apparent and is discussed in the following section.

2.3.2 Switch-level Simulation

A new class of digital simulators known as switch-level simulators has emerged fairly recently as

an alternative to the more conventional gate-level simulators, specifically for the simulation of MOS

VLSI circuits The Boolean gate concept is discarded altogether in these simulators, and is replaced by a

* . bidirectional switch model which closely matches the structure and behavior of MOS circuits.

* . One of the first switch-level simulators to be implemented is MOSSIM [191 in which an MOS

*logic network is modeled as a set of nodes interconnected by a set of transistor switches. MOSSLIM uses

three logic levels, 0, 1, and X., to describe signal values at the various nodes. The level X is the unde-

fined or sometimes unknown level used to represent a signal level that cannot be uniquely determined

due to an ambiguity in the network condition. Each node is also assigned a strength which indicates

the extent to which the node can force its value on other nodes connected to it via a path of conducting

switches. Input nodes are the strongest and provide externally generated signals such as, power lines,

ground. clock drivers, and data inputs. A node connected to a voltage source through a pullup resistor

is called a pullup node. The pullup resistor is normally realized using a depletion transistor with gate

and source terminals shorted. A pullup node is at level 1 unless there is a path of conducting

........

32

transistors to an input node, in which case the pullup node takes on the value of the stronger node. The

rest of the nodes in the circuit are normal nodes. These nodes are the weakest and are capable of only

storing charge dynamically. Thus we have three types of nodes with strengths ordered as

input > pullup > normaL

An MOS transistor is modeled as a three node device which acts as a bidirectional switch between

its drain and source nodes with the signal at the gate node controlling the state of the switch. There

are two types of transistors allowed in MOSSIM : n-type and p-type. When the gate signal is a 0, the

n-type (p-type) switch is open (closed), and when the gate signal is a 1, the n-type (p-type) switch is

closed (open). The status of either switch is unknown, i.e., it may be open, closed, or somewhere -

between, when the gate signal is in the X state. When a switch is closed, it is treated as a bidirectional

switch, and no distinction is made between drain and source nodes of the device.

The network can be described to MOSSIM in terms of transistors, logic gates, and user-defined

macros, but these are all translated into a transistor level representation for simulation. The program

begins by splitting each input node (including the ground node) into a number of physical input nodes,

one for each transistor to which it is connected. This is possible since the input nodes provide strong sig-

nals to the network which cannot be modified by the internal operations of the network. The gate

node of a transistor is treated as a pure input to the switch and its state determines the conduction state

of the switch. This helps partition the set of transistors into groups, which can be defined as follows:

Consider an undirected graph with a vertex for every node in the circuit and an edge between drain

and source nodes for each transistor. The graph will then have several connected components. The set

of nodes and transistors corresponding to a component forms a group. Thus all bilateral interactions

between nodes take place within a group.

A clock in MOSSIM is defined as a set of binary sequences to be applied cyclically to a set of

input nodes. A phase is one set of clock and input data values. The basic quantum of time is a unit

step. Within a phase, the circuit is assumed to settle down after a certain number of unit steps. The

2P-.,°

-*.. . --- - . . .

33

simulation begins by first initializing all nodes to the X state. At the beginning of each phase all input

.-'. nodes are assigned their new values and the groups whose input nodes are changed are placed in an

.... event list that has initialized previously. Then a series of unit steps are taken until the event list is

emptied, indicating that the network has settled. Once the network settles, the simulation of the next

phase can begin. During a unit step simulation, the states of the transistors within a group are held

fixed and the values of the pullup and normal nodes are updated. This is done for each group in the

event list. Each updating results in a certain number (possibly zero) of nodes changing states which are

accumulated in a set of active nodes. After all the groups in the event list are simulated, the transistors

whose gate nodes are active are updated and the groups in which these transistors lie are added to a new

event list for use in the next unit step. By first changing the node states while holding the transistor

states fixed and then changing the transistor states with the nodes fixed, the transistors, in effect,

* switch one unit of time after their gate nodes change. Thus if the transistor groups are treated as con-

ventional logic gates, the simulation appears very much like an event-driven, unit-delay gate-level

simulation. The procedure for updating the node states within a group, however, is very different.

We now describe the algorithms in MOSSIM used to update the states of the drain and source

nodes of transistors within a group based on the concept of node strengths. Initially, all pullup nodes

are set to logical 1. Next, an undirected graph is constructed with a vertex corresponding to each node

in the group and an edge between the drain and source nodes of each transistor in the closed state. The

connected components of this graph partition the set of nodes into equivalence classs Within each

- class, the strongest nodes are determined based on the ordering input> pullup > normal. The strength

of the class is then the strength of the strongest nodes. If the states of the strongest nodes are equal,

* then class state is set to this state; otherwise the class state is set to X. If the class strength is pullup, the

class state is always a I.

If the group contains x-transistors, which are transistors having an X state on their gate nodes,

then the unknown switching behavior of these transistors could alter the class states. To deal with

• .' -* - - -

- * '*-*'°-*' .. ,\-. . -

34

them consistently, MOSSIM adopts the following philosophy if a node has a unique state regardless of

the conduction state of the x-transistors, then the node will be set to this state; otherwise it will be set

to the X state. Thus the state of each class computed as described above is based on the assumption that

all x-transistors are open.

The second part of simulating the group begins by forming a supergraph containing a vertex for

each class and an edge between two vertices if an x-transistor connects two network nodes in the two

corresponding classes. The connected components of the supergraph partition the classes into a set of

supercasses, in which each superclass is a set of classes linked by x-transistors. If a superclass contains

only one class then no further analysis is needed. Otherwise, the strength of a superclass is computed as

the strength of its strongest classes. The state of a superclass is set to the state of the strongest classes if

they are all equal, and X if they are not. A class is said to be poisoned if its state is different from the

* superclass state. Furthermore, a poisoned class could poison a neighboring class which is not stronger

* than itself even if the state of the neighbor is the same as the superclass state. Thus poisoning can

spread through classes and be stopped only by classes with greater strength than the original poisoned

class. The state of each poisoned class is then reset to X. Once the states of all the classes have been

computed, the state of each node in a class is set to its class state.

Several modifications and extensions of the basic MOSSIM philosophy have been considered by a

number of authors [20-25,63,65]. In [201, Bryant provides an abstract model for the switch-level simu-

lation of MOS logic networks which is more general and formal than the one in MOSSIM. Unlike

* MOSSIN, only two types of nodes, namely, input nodes and normal nodes are allowed. A third type of

transistor, called d-type (for depletion), is introduced which is closed regardless of its gate signal. To

model ratioed logic, transistors may have different strengths (or conductances) when in the closed state.

- Thus, a stronger transistor (such as an inverter pulldown) is able to override a weaker one (such as a V.

pullup load transistor). In MOSSIM, each normal node is modeled as having a capacitance of unknown

". value which can store charge but cannot drive its signal onto another node in a different state. Unfor-

. *.* * * * * * *. *

* .:.~-*.*..*..*. . -.. *......-.-. -. -.... . .* . . .:

35

tunately. this model cannot describe the behavior of many bus designs in which a relatively high capa-

citance bus node is connected to a node of lower capacitance (such as the storage node i~n a three-

transistor dynamic RAM cell) resulting in both nodes having the same logic state that was originally

on the bus. In the new model each normal node is assigned a size, which is indicative of the value of

the node-capacitance.

The time and the electrical behavior of the logic network are described in a formal way in (20]

by in troducing the notion of a target function. Given a particular set of input node, transistor, and

initial normal node states, the target function provides the final states of the normal nodes. For circuits

free of critical races, the logical behavior of the network can be modeled by repeated application of the

target function. The passage of time is modeled just as in IMOSSIM, iLe., every application of the target

function is like advancing a unit step in time. The electrical behavior of the network is modeled by

defining the target state function in terms of a set of steady-state voltages in an order-of-magnit'ude

electrical network. This class of networks models the conducting transistors by linear resistors, where

the resistances (or conductances) of different strength transistors differ by orders of magnitude. As a

* result, any path to an input node containing only transistors of large strength is modeled as overriding

any path containing a transistor with lessr strength. Similarly, the normal nodes are modeled by capa-

citors where the capacitances for different size nodes differ by orders of magnitude. Thus, the target

states formed on a set of nodes through charge sharing depend, only on the state of the largest size

* node(s) in the set. Furthermore, no attempt is made to accurately compute the node voltages. Instead,

* they are classified into three logic levels, 0, X, and 1. Although the target state is defined in terms of

an electrical model, it can be computed logically, without evaluating any electrical network. By intro-

ducing an abstraction called logic signals, an iterative method which uses only operations on a simple,

discrete algebra is used for computing the target state function. A logic signal provides a composite

[.-

description of a switch-level network at some node for a particular set of node and transistor states,

much in the same way as a Thevenin equivalent network for an electrical network. Finding the target

state then reduces to finding a minimum solution of a set of equations involving logic signals. -

. '. .--.."*35 .S

36

In [211 Byrd et al. have independently developed a consistent, complete, circuit theoretic based

interpretation of switch-level simulation and modeling. They formally relate the true behavior of real

conductance networks and the switch-level model. As in Bryant's model [20 transistor switches are

modeled as linear conductors whose conductances belong to an arbitrarily deep hierarchy of conduc-

tance class, ',G2 , - - - ,G, where any g'EG1 and gJEGJ satisfies gi>>g, if i>. Some drawbacks of

Bryant's solution of the conductance network using a minimum principle with a discrete algebra are

pointed out and a more general circuit theoretic based procedure which expresses a signal at a normal

node as a convex combination of the input signals is presented. PARCHEMIN is a switch-level simula-

tor using these algorithms.

In [22] the notion of a well-designed circuit is introduced and an improved switch-level simula-

tor that runs extremely fast on such circuits is presented. This simulator also detects race conditions

and handles the X state in a clean and efficient manner. A linear-time algorithm that detects race con-

ditions in any nonoscillating circuit (ie., a circuit that is acyclic within a clock phase) has been

developed by Ramachandran [23]. In certain cases this algorithm is overly cautious and might indicate

a presence of a race condition, when in reality, the circuit has no race condition. In [651, the authors

introduce a new model, known as the NC-model. for switch-level simulation, and show that the simu-

lation of any circuit (including oscillating circuits) can be performed in quadratic time under this new

model.

An alternative approach to switch-level simulation is based on generation and evaluation of sym-

bolic logic expressions [24] A special discrete algebra is used, and logic expressions for a node are gen-

erated hierarchically, where each level of hierarchy represents the influence of node signals of a partic-

ular strength on that node. In evaluating the logic expressions, the undefined X state does not present

any special problem due to the versatility of the new algebra. Furthermore, simulating the basic faults

in MOS circuits is easily incorporated, thereby making this a fairly attractive scheme. These ideas are

used in EXPRESS-II [25. a fast and efficient switch-level fault simulator for MOS designs.

. --.......

37

2.4 Mixed-mode or Hybrid Simulation

An ideal simulator for VLSI circuits would be one which has the speed and efficiency of digital

or logic simulators while providing the accuracy and detail of an analog simulator. An attempt to

achieve this is through mixed-mode or hybrid simulation. in many of the VLSI circuits the detail and

accuracy provided by the analog simulators are not required for the entire circuit under investigation.

but only for some critical areas of the circuit. This is particularly true of large digital circuits, where

often a simple digital simulation (gate-level or switch-level) provides sufficient information about the

* performance of much of the circuit, while some parts, such as sense amplifiers in memory circuits or

tightly coupled analog blocks, might require more detailed modeling and analysis.

By providing a range of models, from highly accurate and complex analog device models to much

less accurate but greatly simplified gate-level or switch-level models, the circuit designer can reduce the

* simulation time significantly by choosing the computationally less expensive models whenever it is

* appropriate and possible. Another property of large circuits which may be exploited is their relative

-. .inactivity or latency. In a typical VLSI circuit, usually only less than 200/ of the signals change values

signif icantly at any one time instant.

Hybrid analysis programs allow the designer to use a combination of analysis techniques and

models, ranging from circuit and timing simulation to much cheaper digital simulation, in the same

program. These simulators, such as SPLICE [13], DIANA [14), and SAMSON [i151 have been observed to

realize a one or two order of magnitude reduction in simulation time and substantially lower memory

than standard circuit simulators, while still providing a detailed circuit-level analysis where necessary.

Mixed-mode or hybrid simulators, however, work well as long as only small, isolated sections of

the circuit need to be simulated as analog circuits. Unfortunately, the partitioning of the circuit into

sections which require analog simulation and those which do not is not fully automatic; some amount

of human intervention is still required. Furthermore, trying to combine analog and digital models in a

single program requires rather unsatisfactory approximations at the interfaces. For example, if the out-

i.°." b

K 38.

put of a section of logic gates is to be interfaced to an input of a section modeled as an analog circuit, a

logic-to-voltage waveform conversion is required. This, of course, cannot be done with any accuracy,

.. since much of the necessary information is lacking. The resultant outputs of the analog section must

then be viewed somewhat skeptically. Similarly, certain states used in logic simulators, such as the

unknown state X, or the high-impedance state R- do not represent a single voltage and therefore cannot

be interfaced with an analog simulator. Therefore, unless great care is exercised, a hybrid simulator

could end up providing the accuracy of a logic simulator at the speed of an analog simulator, rather

than vice versa.

2.5 Switch-level Timing Simulation

The problem of switch-level timing simulation of a digital circuit can be defined as follows:

Consider the analog waveform V.(t), tE[totrf] at a certain node n in a digital circuit and choose p--I

threshold values, ordered as V1 <v 2 < ... <V,-,. Define the p-state digital equivalent of V. to be

X.(t) = xi if vi <Vn(t) 4<vii (2.25a)

where x.1,, x1, " , xP. 1 are the p digital states and vo and vp are the minimum and maximum

values of the analog waveforms respectively. We also define

T= Itk : Vl(tk)E Iv1,v 2,. ,vp..v 1. (2.25b)

Thus T, is the set of threshold crossing times of the analog waveform at node n in the circuit, or alter-

natively, the set of state transition times of its p-state digital equivalent. The aim of a switch-level 0.

. timing simulator is to obtain the p-state digital equivalents X. for each n E H, with special emphasis on

computing (or estimating) the elements of T = U T,, where n1 denotes the set of nodes of interest to
nE i

the user. For brevity in notation, we shall use SLT to stand for switch-level timing, and so the elements

of the set T of threshold crossing times will be referred to as SLT estimates.

" . . . " - " " - "" ." "' -- . ' '

39

Since most VLSI circuits are primarily digital in nature, the circuit designer is very often satisfied

in performing an SLT simulation in the design-verification process since this enables him to estimate

the propagation delays, speeds of computation, optimal clocking rates, etc. The usefulness of an SLT

simulator can be measured by considering two factors, namely, the simulation cost which is primarily

an increasing function of the CPU time and memory used and, secondly, the accuracy of the SLT esti-

mates. There are two major approaches that could be used to perform an SLT simulation on a large

digital circuit:

*- (1) Use an analog simulator and convert the resulting analog waveform into their p-state digital

equivalents directly, by choosing an appropriate set of p -I threshold voltages.

* (2) Use a digital simulator with delay estimation that computes the p-state digital waveform at each

circuit node and generates the SLT estimates.

Since it is impossible to obtain the exact waveforms analytically, in a typical VLSI circuit, the

SLT estimates produced by standard circuit simulators are considered accurate enough and are often

taken as references to compare the accuracies of the SLT estimates produced with other simulators.

* Simulators using the first approach include the so-called timing simulators such as MOTIS [51 MOTIS-C

[61 and PREMOS [81 which are analog simulators using relaxation techniques to speed up the simula-

tion process as described in Section 2.2.2.2.

In spite of the several attempts made to speed up the performance of standard circuit simulators

as discussed in Section 2.2, analog simulators are still very expensive to use to analyze circuits with

' more than 10k devices. Digital simulators, on the other hand, have a distinct advantage in speed over

analog simulators. Several large circuits with over 100k transistors have been successfully handled by

these simulators. However, they provide rather inaccurate SLT information due to the poor modeling

of the dynamics of the circuits. Most digital simulators produce two-state digital waveforms and

account for the circuit dynamics by delaying the transition between states. In all cases the delays are

taken to be single-threshold delays. Furthermore, these simulators do not take into account the depen-

*" --.** , *- .* * * * *.* . .. - -

40

dence of propagation delays on circuit parameters, such as load capacitance, strengths of devices, input

slew-rates, and other factors.

Based on the above facts, one can conclude that the circuit designer who wishes to use one of the

existing analog or digital simulation tools to generate SLT estimates in VLSI circuits is placed in a diffi-

*. cult situation. Analog simulators provide fairly accurate SLT estimates at prohibitive simulation costs,

while digital simulators can handle entire VLSI circuits but provide very poor SLT estimates, or some-

times, none at all.

It is therefore clearly necessary to provide the circuit designer with a simulation tool capable of

providing accurate SLT estimates for VLSI circuits at reasonable simulation costs, thus having the best

features of both analog and digital simulators. To this end, one is more likely to succeed in trying to

incorporate better timing models in digital simulators since efforts to speed up analog simulators seem

to be approaching a limit which is far below the speeds of the digital ones. Restricting oneself to the

MOS technology seems to make the problem a little easier. An attempt has been made recently to

model the MOS transistor as a linear resistor resulting in an RC-delay model for the circuit dynamics

which is used in RSIM [26] This is a logic-level timing simulator which predicts the logic state of a

node and uses an RC time constant to estimate the transition times if the node changes state. The

transistor model in RSIM is a gate-voltage dependent resistance Rd. between drain and source terminals.

When the switch is closed, we have R. = Reff, when open Rd. = o, and when in the unknown state

, (which means vgate = X) the drain-source connection is described by a resistance interval, Le,

* 1 ---- [RefoRd The effective resistance Reff is determined separately for each transistor as a function

of the device width and length, the transistor type, and other device parameters. The determination of

the effective resistance is made once for each transistor and is about the only device information used

by RSIM. Voltages in the RSIM model are quantized into one of three values, 0, 1, or X, and decided

by choosing two threshold voltages, vlow and Vhigh.

41

The effect of the resistive network on a particular node is modeled by a Thevenin equivalent cir-

cuit. The values of Vthev and Rtkh, are computed, in some cases approximately, based on a series-

parallel-type approach which is illustrated in [271. The value of Vth,. (which may be a voltage inter-

val in some cases) decides the new state of the node. If the new value at a node is different from the

previous one, then a transition is scheduled RtaevCjojj time units later, where C1j, is the net capaci-

tance at the node. Actually, RSIM uses three values of the effective resistance for a transistor, namely,

a static value used to determine Vth,,, and two others to be used in determining rise and fall delays.

All these values are determined in a presimulation phase using an accurate circuit simulator such as

SPICE2 [I1. Charge sharing effects are also taken into account. A nice feature of this type of simula-

tion is that the X state does not impose any particular difficulty as far as the simulation is concerned.

The simulator is event-driven and is fast enough to simulate circuits of up to 50k transistors. The SLT

estimates are, however, computed only by single threshold RC delays and are sometimes found to be

even more than 30% off when compared with those of SPICE2, especially in the case of MOS circuits

* with large pass-transistor chains.

This dissertation deals primarily with the development of a switch-level timing simulator with

• an empirically observed accuracy of the SLT estimates generated to be within 109' of those of SPICE2.

The high accuracy of the SLT estimates without the use of an analog simulator can be attributed to the

*{ use of a delay-operator which will be discussed in detail in Chapter 5. This operator uses a notion of

two-threshold delays, and is thus able to account for, among several other factors, the effect of the slope

of the analog input waveforms on the timing at the output of a logic gate or a functional block.

. .. -

.

42

CHAPTER 3

NETWORK PARTITIONING AND ORDERLNG

In this chapter an MOS network model that is used to provide accurate switch-level timing (SLT)

estimates will be presented. The network is then partitioned into several subnetworks, or blocks. The

set of blocks is further partitioned into its strongly connected components (SCC). The SCC's in the net-

work are then ordered for simulation. Throughout this dissertation, the algorithms will be outlined

and discussed for n-channel MOS (NMOS) circuits with depletion loads only. Several extensions to

handle circuits with other technologies, such as complementary MOS (CMOS), will, however, be men-

tioned briefly in Chapter 8.

3.1 NMOS Network Model

An NMOS digital network 11 consists of a set of nodes N interconnected by a set of n-channel _

MOS transistors M. The network description can be extracted directly from the layout using circuit

extractors [49,61], or has to be given by the user. In any case, the network description is assumed to

contain a netlist of all the NMOS transistors along with several geometrical and process parameters

such as length (L) and width (W) of each device, zero-bias device threshold voltage (VTO), transcon-

ductance parameter (KP), the analog waveform at the input sources and a fixed lumped capacitance

from each node to ground. Specifying a grounded capacitance from each node might seem to be a res-

triction, but most circuit extractors could be asked to compute equivalent device capacitances along

with the capacitance due to the interconnect regions. In this chapter, the only device parameter used

will be VTO. This parameter will separate the set of transistors into enhancement and depletion types.

The rest of the parameters will be used in Chapters 4 and 5 to generate accurate SLT estimates.

43

There are three types of nodes: input nodes, puliup nodes, and normal nodes. Input nodes, which

are modeled as voltage sources, provide the strongest signals to the network from the outside. Examples

of input nodes include the power supply (VDD), the ground node, as well as all the input clock signals.

Pullup nodes are attached to the power supply VDD via a pullup resistor. These include the output

nodes of NMOS inverters, NAND gates, NOR gates etc. A pullup node retains the value of the supply

unless forced to ground through a path of conducting devices. The remaining nodes in the circuit are

" classified as normal nodes. These are the weakest nodes as they cannot force their signals on a stronger

node but are capable of storing a signal dynamically.

In the context of switch-level timing simulation, as defined in Section 2.5 of this thesis, the user is

only interested in obtaining p-state digital equivalents of the analog waveforms at various nodes in the

* . circuit over a certain time interval [to, tf. Clearly, the larger the number of states, the better is the

level of detail provided, and thus, the more useful is the information to the user. It is also clear that

using an analog simulator to obtain the analog waveforms and then converting them to p-state digital

equivalents is highly cost-ineffective for large integrated circuits. Hence, it is desirable to generate the

required digital equivalents directly via p-state digital simulation. However, the complexity of digital

simulation dramatically increases with the number of states p, particularly in the context of generating

S'accurate timing estimates. The choice of p=2 must be rejected outright, since in this case only binary

(ie., 0 or 1) waveforms are produced. Binary waveforms contain no information whatsoever, on the

slopes of the corresponding analog waveforms, the presence of glitches, or other information which is

often useful to a designer when evaluating the performance of a circuit. In our model therefore, we

use three states (i.e, p=3) to describe the values of digital signals, which seems to be a fair compromise

S'..between the level of detail and the generation of accurate SLT estimates. Thus at any time tE[t, tf] L

*'' the three-state (or ternary) digital signal Xn(t) at node nEN is related to its analog counterpart VW(t)

as follows:

... . ,-.

.......
........ *

44

0 <-> 0.0V<V.(t)<VL

Xu(t) U <i-> VL<V.(t)<VN (3.1)

1 <-> VH <V,(t)-VDD

where VL and Vt1 are two thresholds chosen such that 0.0< VL <V11 <VDD. Here, u is an intermediate

state between the steady low and high states 0 and I used to represent signals in transition, model

slopes of changing analog waveforms, detect spurious glitches and hazards, etc. In our model, the inter-

mediate state is not used as an unknown or undefined state as the X state in MOSSIM [191 but rather as

an analog voltage between the two thresholds VL and V and hence can never be considered as a steady

state 0 or 1. It is this interpretation of the third logic level that helps simplify the procedure for

switch-level simulation as will be seen later in Chapter 4. The ternary state X.(t) of a node nEN at

some time tE[ttf] will be denoted simply by X, whenever there is no ambiguity in time. :%

The ternary algebra used to manipulate the discrete signals is an extension of the binary Boolean

algebra. The ternary algebra is an algebra defined on the set L=10,ulI , with three basic operations of

AND (A), OR (V), and INVERSE (-). For any xy EL, the operations of AND and OR are defined as

follows:

x y xVy xAy -
0 0 0 0
0 u u 0
0 1 1 0
u 0 u 0
u u u u
u 1 1 u
1 0 1 0
1 u 1 u
1 1 1 I1- .

and for any xEL its INVERSE -,x is defined as follows:

......................*.., ..-. _-'-",...' '., -'- - -'."--.-•. ,.' ... , .. ,..'."."...... .'.,•",..., .-.- .,... .. , .,-.',.,. .,, ,L'

p0-

x l

0

Clearly, L is closed under all three operations and the system (L,A,V,-,) forms a distributive lattice [39]

with zero element 0 and universal element 1. Most of the properties of Boolean Algebra are preserved

in the ternary algebra, except for the Law of Excluded Middle since uV-u = u e 1 and

uA-"u u * 0.

An N MOS transistor is modeled as a three-terminal device with a switch between the drain and

source terminals and the signal at the gate controlling the status of the switch. In this dissertation we

will only consider transistors whose drain and source nodes are different. In some technologies the

drain and source regions of a transistor may correspond to the same net in the layout as a means of

implementing a variable resistance. We shall, however, exclude such networks from our model Aso-

[- ciated with each device is a resistance which is a primarily a function of the ratio of the physical

length to width (L/W) of the device when laid out. There are two types of NTMOS transistors, namely,

the enhancement type and the depletion type. Enhancement devices are characterized by positive dev-

ice threshold voltages (i.Le, VTO > 0) and behave as voltage-controlled switches. Depletion devices, on

the other hand, have a negative VTO and are mainly used to implement pullup resistors. The gate and

source nodes of a depletion device are usually shorted resulting in a two-terminal resistor. In the case

of an enhancement NMOS device, the switch between drain and source nodes is open, closed, or in an

intermediate state depending on whether the signal at the gate node is a 0, 1, or u, respectively. In the

case of a depletion device, the switch is always closed irrespective of the signal at the gate node. Alge-

- braically, each transistor mEM has a state ZE{Ou,iI, where 0 indicates open, u indicates intermedi-

ate, and 1 indicates closed. Although the transistor states and the node states are different physical

phenomena, the same mathematical objects will be used to represent both.

• / m ... ,.n......................i "" I

46

Mathematically, the NMOS network (NM) can be specified by giving a listing of nodes in N

and transistors in M and the following functions:

NODTYP: N- 4 input ,pullup ,normai I the node type

TRNTYP: M-fenhancement epletion I the transistor type

GATE: M-N the gate node

SOURCE: M-N the source node

DRAIN: M-N the drain node

CAP: N-[Cmm , Cma] the node capacitance

RES: M-[Rmm , Rmax] the transistor resistance

At any instant in time the state of the network is represented by 11(XZ) where X=IX. : nEN)

and Z={Zm : mE M) with Xn, Z. E O,u, 1 representing the ternary states of node n and transistor m

at that time instant. Under stable or steady-state conditions, the transistor states Z are functions of

node states X For example. consider a transistor m with gate node n. i.e., GATE(m)= n. If

TRNTYP(m) = enhancement, then Zm = X, in the steady-state, otherwise if

TRINTYP(m) = depletion, then Zm = 1 always.

3.2 Network Partitioning

In this section we describe the strategy and algorithms to partition the NMOS network C(NM)

into several transistor-disjoint subnetworks il 1, 2, 1,,, where each subnetwork or block f12 has a

certain special configuration that would aid the simulation process. The partitioning strategy is basi-

cally to divide the set of enhancement transistors into two types, namely, driver transistors and pass

transistors. The transistors of a particular type are then grouped together to constitute a subnetwork or

a block if they have a common DC-path between their source and drain nodes (a notion that will be

made precise in Section 3.2.2). The key to deciding whether an enhancement transistor is a driver

~~.*.*.. ~~ ,.... .. .

- - -. -" *' - Wa7W .~

47

transistor or a pass transistor is in the notion of an external node which will also be defined in Section

3.2.2. It is much easier to formally present our ideas and concepts if the NMOS network is viewed as

an undirected graph; therefore we begin by reviewing some basic fundamentals from graph theory for

the sake of completeness and also for the benefit of readers who are not familiar with the subject. An

excellent reference on the fundamentals of graph theory is a book by Bondy and Murty [50].

3.2.1 Review of Graph Theory

An undirected graph H is an ordered triple (V (H).E (H),4IH), consisting of a nonempty set

V (H) of vertices, a set E (H) of edges, that is disjoint from V (H). and an incidence function #y

which associates with each edge of H an unordered pair of (not necessarily distinct) vertices in H. If

e is an edge and v and w are vertices such that 4iH (e) = <vw >, then e is said to join v and w, the

vertices v and w are called the ends of e, and moreover, v and w are said to be adjacent in H. In

this case we will usually refer to the edge e as simply <v ,w >. The set of all vertices in H that are

adjacent to the vertex v is denoted by AdjH (v). The two ends of an edge are incident with the edge

and vice versa. If the two ends of an edge are the same, then the edge is called a loop, otherwise it is a

link. The symbols Y(H) and e(H) are used to denote the number of vertices and edges in graph H

-* respectively, i.e., i(H) = IV (H)I and e(H) = IE (H)I. When only one graph is under discussion it

will be denoted by H, and we will use V , E , v,and e instead of V (H), E (H). (H), and E(H).

An undirected graph is usually represented pictorially on a plane by associating one point (or a dot) for

each vertex and joining two points by a line (not necessarily straight) if the corresponding vertices are

joined by an edge. As an example, consider a graph H with

V (H) = v 1,v,v 3,vv .5)

E(H) = e -,,e 3,e.;,e e6 }

and the incidence function defined by

.-.- . .

"" " " , -'" ° --. " -a." -".-..-'A"a."-."! """." . """ - - "' " ' , """ ' ," . .""""" . , .,-'-.,-"-"-.,-"-' -","-'

48

/~~~~H (e1) = <v.'1,v,2>, V/-y(e 2) --- <v2,V.4>, /-(e,) = <V4,V3>

"" €/-/~O(,) = <v3,V1>,*1j.(es5) <V2,V2>,4#/-(e6) - <V1,%"4> '-

The pictorial representation of this graph is shown in Figure 3.1. The point representing the vertex v 5

is isolated in the picture since there are no edges insident on this vertex in this case. Hence vertices

with no edges incident on them are called isolated vertices. Henceforth, we shall refer to a graph by its

pictorial representation.

A graph F is a subgraph of H, written as F CH, if V (F)QV (H), E (F)rE (H), and *F is a

restriction of OJH to E (F). If V' is a subset of V, then the subgraph of H whose vertex set is V' and

whose edge set is the set of all edges of H that have both ends in V' is called the induced subgraph of

H by V" and is denoted by H (V'. The induced subgraph H [V \V', denoted by H -V, is the sub-

" graph obtained from H by deleting the vertices from V' along with all their incident edges. If E' is a

nonempty subset of E, then the subgraph of H induced by E' is the one with vertex set as the set of

* the ends of edges in E' and edge set E , and is denoted by H [E 1. The subgraph obtained from H by

" deleting the edges in E' is denoted as H -E'. It must be pointed out that deleting vertices from a

* graph involves deleting incident edges also; however, deleting edges involves only the removal of edges

while leaving the set of vertices intact, i.e., V (H -E') = V (H). Similarly, H +E' is a graph obtained

from H by inserting a new set. of edges E' which are disjoint from the old set of edges E (H). Again,

* in this case, the ends of the edges in E' must necessarily be in V(H) since no new vertices are added. If

F and H are two undirected graphs then their union is a graph, denoted by F U H, whose vertex set

, is V(F)UV(H) and whose edge set is E(F)UE(H). If F and H are disjoint graphs, then their

union is usually denoted by F +H. The degree dH (v) of a vertex v in H is the number of edges

incident on v, with each loop counting as two edges.

A walk in an undirected graph H is a finite, nonempty sequence W = v e 1v le v2 "" e "

whose terms are alternately vertices and edges in H such that for each 1 <i 4<k the ends of e, are vi -1

and v,. In this case W is said to be a walk from vo to vk, or a (v ,vL)-path in H, and the integer k is

..............
.- '.---...,. . -...-.... . . -. -..-...-..-.-.. ,...-...... .'...... ' " '.- .

49

VI

V50V 2 0o V3

V4

FP-4526

Figure 3.1 Am undirected graph H

Z:% -

11 i. 7 - :7037

50

called the length of the walk. The vertices v(, and vk are called the origin and terminus of the walk

respectively, while the vertices v J,v 2. vi, -1 are its internal vertices. If all the vertices in a walk are

distinct then it is said to be a path. Usually, the subgraph of H whose vertices and edges are terms of a

path is also referred to as a path. A walk is closed if it has positive length (i.ex, k >0) and its origin and

terminus are the same. A closed walk whose origin and internal vertices are distinct is a cycle; just as

with paths we sometimes use the term "cycle" to denote the graph corresponding to the cycle. Two ver-

tices v and w of H are said to be connected if there exists a (v,w)-path in H. A subgraph F is a

component of H if it is a maximal induced subgraph such that any two of its vertices are connected.

If H has only one component then H is connected, otherwise, it is disconnected. The number of com-

ponents of H is denoted by 4(H).

3.2.2 Driver and Pass Transistors

We begin this section by intuitively explaining the difference between driver and pass transistors

through some examples. We then formally present our strategy to decide whether an enhancement

device in the network is a driver transistor or a pass transistor and present an algorithm to achieve this

in linear time. Finally, we show how the nodes and transistors in a network can be partitioned into

various subnetworks or blocks, where each block could be one of three types, namely, input sources

(SRC), a collection of driver transistors along with a depletion device (MFB), or a collection of pass

transistors (PTB).

Before going into the formal definitions, we would like to provide the reader with some intuition

on deciding between driver and pass transistors in a networL We define external nodes to be the set of

nodes of "input" strength apart from the ground node together with those nodes of "normal" strength

that are either gate nodes of enhancement transistors or are user-requested output nodes. Now consider

a graph on the nodes of an NMOS network with an edge between the drain and source nodes of each

enhancement transistor. Let us focus our attention on a pullup node, say np in the graph. For each

. S S S - *S S S S ~ - ° o '

'" "" "' " °"*°' " " "" "'"+'" " "" " ° " + "° " "' °'""° " "" • ' .°' *'. • *. . °" °° -- - - - - -"-- - - - - - - - -"-- - - - - - - - - - - - - - -... -° .,.-. -. % °. -. . -+ S - " S °. . -. ' .° °%;% +% + .•...-. + ' ' " " ' ' " " " '
°

"
°

* '
'

' '

"

51

such pullup node we consider the subnetwork composed of the depletion device connected to the pullup

node and the transistors corresponding to all the paths between np and the ground node. If all the

nodes corresponding to the internal vertices in each of these paths are of "normal" strength and if none

of these nodes is an external node, we can then define the above subnetwork to be a multi-functional

block (MFB) and all the enhancement transistors in it as driver transistors. Furthermore, each MFB

must contain a unique pullup node. Consider an example of an NMOS network shown in Figure 3.2(a)

and the corresponding graph in Figure 3.2(b). From the above definition, clearly m 3 is a driver transis-

* tor. The transistors m, and m 2 are also drivers since the internal node, n 4, is of "normal" strength and

is not an external node. The node n 3 is an external node by definition and hence M 4 and m s are not

driver transistors. In fact m 4, m s, and m 6 are pass transistors. The MFB corresponding to the pullup

.- node, n 2, in this example, is the subnetwork consisting of the depletion transistor m 8 along with the

.-.* ".driver transistors M 1 , M 2, and M 3. The subnetwork composed of the pass transistors M 4, ms, and m is

called a pass transistor block (MTB). As far as switch-level simulation is concerned, an MFB can be

-' treated as a switching network of driver transistors between the pullup node and the ground node.

Note, by definition, the only node that is stronger than the pullup node in such a switching network is

the ground node. Furthermore, one need not compute the waveforms at any of the internal nodes of

the switching network. Therefore the signal at the pullup node of an MFB is computed using a simple

technique using internal node eliminations, which will be discussed in Section 4.2.2 in Chapter 4. In

fact, as we shall see in Chapter 4, the steady-state signal at the pullup node of an MFB is simply a

,- Boolean function of the signals at the gate nodes of its driver transistors. For example, in the circuit of

*:: Figure 3.2(a) the signal at the node n 2 is -((xl/\x 2)Vx 3), where x1 , x2, and X3 are the signals at the

gate nodes of transistors ml, m,,, and m 3, respectively. In other words, an MFB can be considered to be

a single output, multiple input logic gate. The switch-level simulation of a PTB, however, is a more

difficult task since one needs to compute the signals at each node within the PTB. Therefore, the algo-

rithms used to simulate a PTB are much more complex than the ones used to simulate an MFB, and

these will be discussed in Section 4.2.3 in Chapter 4. Also, the techniques we will use to delay the

-* - --.-.. . ..- "-

52

V00

n, q%

MS Me

n2 5 Pl n3 od

® xera Nd

M4.63

Figre3.(a) A NOS irui wih xtrna nde

(bJH ThMrp ersngth ici npr a

0-

53

* signal transitions at the pullup node of an MFB are different from those we will use for the nodes of a

- PTB. Hence we choose to differenuate between driver and pass transistors.

The above definition for a driver transistor is. in fact. only a sufficient condition satisfied by

driver transistors as the following example demonstrates. Consider the NMOS network shown in Fig-

ure 3.3(a), and the corresponding graph in Figure 13(b). In this example n4 is an external node by

- definition. Let us suppose n3 is simply a node of "normal" strength and is not an external node. In this

case the path consisting of m 4 and m s would satisfy the above definition of driver transistors and

* hence these transistors would be included in the MFB with pullup node n 2. However, one needs to

" compute the signal at n4 since this determines the switching state of transistor m 7, and in order to do

this, we need to compute the signal at node n 3 which, by the above definition, is an internal node of an

.MFB. We therefore have to modify our definition of a driver transistor. To this end, we introduce the

. concept of a pseudo-external node. A node of "normal' strength is said to be a pseudo-external node if

it can be connected to an external node by a path that does not contain a pullup node or the ground

node. Clearly, the signals at the pseudo-external nodes have to be computed in order to compute the

signals at the external nodes of "normal" strength. Hence such a node cannot be an internal node of an

MEB We therefore modify our definition of driver transistors to be the transistors in those paths

between a pullup node and ground that do not contain an external or pseudo-external node. Thus

* ' transistors m 4 and ms5 in the example in Figure 3.3(a) are not driver transistors. The above modifica-

tion is, however, still inadequate to be a necessary condition to be satisfied by driver transistors as it

- does not agree with our intuition in the following example. Consider the NMOS network shown in

Figure 34(a) and the corresponding graph in Figure 3.4(b). In this case we have two pullup nodes,

- namely, n2 and n4 and no external or pseudo-external nodes in the network. However, node n3 cannot

be considered an internal node in either of the two MFB's since its signal can be influenced by either of

the two pullup nodes. Hence the transistors a4, iM5 , and m 6 must be treated as pass transistors in this

example. To include this case in our definition we would have to treat the other pullup nodes in the

network as external nodes while we are trying to determine the driver transistors between a particular

..... ,,...*...-..*...........,

~~~~~~~~~~~~~~~~~~~~~~~~~~.."..."..".-"-.-.. ".-... ....-- . ... .... v..'.......'-.'-......'-., '...,-
.. ." ... . ,, 3 . ,a . ,,-,. ,., , ,,t -- ,,,m, a, ,,_',, t...t , . .~m 

m
' ' " . - - _ , -_ , _L " " ." * . ." - ' *



54

V00

non

nbn)
Pul Up Nod

M4 Exera7Nd

M, ms3

Figre3.(a: n N Q ici ihpsuoetra oe
(b: Tegrp ersetn hecrutinpr a



55

V 0

4 4

Tli~

M4 M

b) .I .

* ... --.. .3

M2 Pull Up Nod

.n: n;



56

pullup node and ground. Thus, if we treat n 4 as an external node, then n3 becomes pseudo-external and

hence we get m, and m, as the only driver transistors in the MFB corresponding to n 2. Similarly, if

we treat n 2 as an external node we get m 3 as the only driver transistor in the MFB corresponding to n4.

The purpose of the above discussions was mainly to help the reader form some kind of an intui-

tive idea on the difference between a driver and a pass transistor. The above definitions were by no

means precise and were not meant to be formal defi. 'tions. We now develop a completely precise and

formal definition of driver and pass transistors by introducing the notion of splitting a vertex in a

graph. Consider an undirected graph H (V E ,0H) and vertex v in the graph of degree k >1, i e,

dH (1') = k I. The vertex v is said to be loop-free if there are no loops incident on t. The entire

graph is loop-free if all its vertices are loop-free, i.e., it has no loops as edges. A graph is said to be iso-

lated if all its vertices are isolated, i.e., it has no edges.

Definition 3.1: Let v be a loop-free vertex of degree k > I in an undirected graph H. The v-split

graph or the graph obtained on splitting v in H, is a graph obtained by splitting the vertex v into k

new vertices y ,Y2', 'YL with each edge formerly joining the vertex v to w, now joining yj to w,.

We denote the v -split graph as H iv. More formally we can define the v -split graph of H as

Hev = ((H -)U Y) + E, (3.2)

where Y denotes an isolated graph on the k new vertices {Y IY2,"" ,Y } and

E = < wI ,y > i =1,2, k }. Thus splitting a vertex creates a new graph with k -1 more ver-

tices but with the same set of edges. This is in contrast to the notion of adding new edges to a graph in

which case the vertex set is unaltered while new edges are added to the graph. It can easily be seen

that if k =1, then splitting the vertex v does not alter the graph, i.e, H ov = H if dH (v )=I. Sini--

larly, the notion of vertex splitting can be extended to include the case k =0 by defining H ev =H if

dH (v)=O. If V' Iv 1 ,v,'" ,vI is a subset of loop-free vertices in H then the V'-split graph of H

can be defined as follows:

-. 7



F - --- O-% 
- ..

~tj,

57

H "= ( " (H Ov d)e 2 ' ).vq. (3.3)

. H o1' is well-defined since the order in which the vertices of V' are split does not matter. The end

result is always the same. As an example consider the graph shown in Figure 3.5(a). The graph

obtained by splitting the vertices v and v 2 is shown in Figure 3.5(b).

An undirected graph H represents a network 01 if there is a vertex in H corresponding to each

node in the network and an edge between two vertices if the corresponding nodes are the source and

drain nodes of some enhancement transistor. Let ME and MD denote the sets of enhancement and

depletion transistors in the network respectively. We can then formally define a graph representing a

network as follows:

Definition 3.2: An undirected graph H (V ,E ,kAn ) is said to represent an NMOS network (N,M) if
there exist bijections 0:.V-.N and /:E'-ME such that 4xqi (e) <v,w> if and only if

-V -N an-. M

I 0(v )Aw)1 = {DRALN( (e )),SOURCE((e ))1.

Theorem 3.1 : If H represents an NMOS network fQ, then H is a loop-free graph.

Proof : If e is a loop in H, then it follows from the above definition that

0(v = DRAIN(O(e))= SOURCE(O(e)) where v is the vertex incident with the loop. But this is

impossible since this means that the source and drain nodes of some transistor are tied together and we

do not consider such networks in our model as explained in Section 3.1. Hence H has no loops. .

Let N1, Np and NN denote the sets of input, pullup, and normal nodes in the network respectively.

It must be noted that, by definition, the ground node (GND) is treated as an input node. Also, by

definition, NP = In EN : n=SOURCE(m) for some rn EMD), i.e., every pullup node is a source node for

a depletion device. The fact that there is a unique depletion device for each pullup node follows from

the practices of conventional NMOS circuit designers. Let No9NN be the subset of normal nodes at

which the user wishes to observe the output waveforms. Also, let NG = {nENN : n=GATE(m) for

some m ME) denote the set of normal nodes that are gate nodes of enhancement transistors in the net-

work. The nodes in NG are also called controlling nodes [22,231 since these nodes control the state of

• . . . , ,



58

a) 2 V3

4043

VI

Figue 3.(a):A 
lop-fre 

grp

v -- * ~*



59 4.

the transistor switches in the network.

'"" Definition 3.3 : The set of external nodes is defined as

NE = NG U No U (Nn\IGND)) (3.4)

the union of three sets, namely, the set of normal nodes which are gate nodes of enhancement transis-

tors, the set of user-requested normal output nodes, and the set of input nodes without the ground node.

Let V , Vp ,VE denote the sets of input, pullup, and external vertices in H corresponding to the

input, pullup, and external nodes in the network. Let H 1 = H 91 V be the graph obtained by splitting

the input vertices in H. In other switch-level simulators [19,25,261. the transistors in the network are

.partitioned into several groups where each transistor group is simply a component of H 1 . We would,

however, like to further partition the transistors into driver and pass transistors. For this purpose we

consider H = H, 9Vp which is the graph obtained by splitting the pullup vertices in addition to the

input vertices from H. The strength of a vertex v, in H is the strength of the corresponding node

0(v) in the network 11. Splitting a vertex retains the strength, i.e, the strength of the new vertices is

the same as that of the original vertex before splitting. Also, splitting a vertex in a graph does not

change the set of edges. Let C H denote the subgraph of H induced by the edges in E (C) for any com-

. ponent C of H1 p. Note that E (Hp )=E (H ) and hence C H is well-defined. Consider a component

C of H1 p. Then, clearly, C H satisfies one and only one of the following conditions:

1. C m contains at least one external vertex.

2(a). C 1 contains no external vertices and no pullup vertices.

* 2(b). C H contains no external vertices and exactly one pullup vertex.

2(c). CH contains no external vertices and at least two pullup vertices.

Definition 3.4: A component C of Ht, is said to be a driver component if C H satisfies condition

2(b) given above.

.................................. . . ... ... ... ... ...



60%

Definition 3.5 A component C of H1 is said to be a pass component if Ch satisfies either condi-

tion 1, or 2(a), or 2(c) given above.

A component satisfying condition 2(a), i.e., having no external and no pullup vertices, is very rare since

this represents a subnetwork containing only normal nodes, with the possibility of the ground node

being included, while none of the normal nodes being gate nodes of enhancement devices or user-

• "requested output nodes. Thus, this type of subnetwork neither interacts with other subnetworks nor is

"- of any interest to the user. For the sake of completeness, however, we include this possibility also and

label the component as a pass component.

The edges in a pass component are called pass edges while those in a driver component are called

driver edges. It must be mentioned, once again, that splitting vertices in graphs does not alter the edge

set of the original graph and so we have a partition of the edges of H into two sets, namely, the set of

pass edges Ep and the set of driver edges ED. We are now ready to define driver transistors and pass

transistors in the NMOS network.

Definition 3.6 An enhancement transistor m in the NMOS network 11 is a driver transistor if

6>-(m)EED and is a pass transistor if 0-(m)EEp, where 0- 1 (m) = e <=> m =Oe

We now form subgraphs with pass edges and driver edges and use these to define partitions of the

NMOS network into special subnetworks. Let H' = H, -/E be the graph obtained by removing all

the pass edges from the V1, -split graph of H and let H 2 = H, - ED be the graph obtained by remov-

ing all the driver edges from H,. Hence H contains only driver edges and H 2 contains only pass

edges. The subgraph induced by the driver edges in a component of H I is called a D-block of H and

* the subgraph induced by the pass edges in a component of H 2 is called a P-block of H. Once again, we

*" make no distinction between edges in H and the graphs obtained by splitting its vertices since all these

graphs have the same set of edges. We thus have partitioned the graph H into several edge-disjoint

subgraphs H, ; i = 1,2,. s where each Hi is either a D-block or a P-block. If Hi is a D-block then it

...... ,.-.--- ar,--.....m.......... .......... . .. m



61

must have a unique pullup vertex and no external vertices as a consequence of its definition. This fact

* and that in conventional NMOS designs a pullup node is connected to a unique depletion device allows

,, us to make the following definition. The notion of an induced subnetwork is similar to that of induced

subgraphs in a graph.

Definition 3.7 A multifunctional block (MFB) is a subnetwork of 0 induced by the transistors

corresponding to the edges of a D-block in H together with the depletion device connected to its pullup

vertex (node). An MFB is a proper MFB if it also contains the ground node (which incidentally is not

an external node and hence does not violate the above definition). In an improper MFB the pullup

node is always stuck at 1 (iG.e, maintains the value of VDD) and hence we shall only consider proper

.. MFB's which we will refer to simply as MFB. The pullup node is the output node of the MFB while

the gate nodes of the driver transistors are its input nodes. The rest of the nodes, namely the drain and

source nodes of the driver transistors, apart from the pullup node and the ground node, are the internal

nodes of the MFB.

Definition 3.8 : A pass transistor block (PTB) is a subnetwork of 10 induced by the transistors

* . corresponding to the edges of a P-block in H. Once again, the gate nodes of all the pass transistors are

* input nodes to the PTB. The rest of nodes, namely, the drain and source nodes of the pass transistors,

-. could either be input nodes, or output nodes, or both (sometimes called ioputs for both input and output

* [7). or none of the above depending upon the interaction of the PTB with the other blocks in the net-

- work. If a drain or source node of a pass transistor is of input strength it is an input node to the PTB, if

'-. it is of pullup strength it is an ioput (i.e., both input and output) node, and if it is a normal external

node it is strictly an output node of the PM

The above definitions of driver and pass transistors completely agree with the author's intuition

- in all cases considered. For example, consider, once again. the circuit in Fir'ure 14(a). The graph Hjp

" in this case, shown in Figure 3.6, has three components. The subgraph CiH in this example is the same as

the component Ci itself, for each i = 1,2,3. The components, C and C3, clearly contain no external

*,''' . -



*~I- I.- V..VI.- . . . . . . . . . . . - - N- Y -TL% -. P'9' 7.-- rp rr

62

n 5 n

mL

Figur 3. Th3rp o Hi iue34b

m 7
2 0.. . . . . . . . . .. . ..- ,..........

. . . . . . . . . .. . . . . . . . . . . . . . . . . .



63

vertices and exactly one pullup vertex and hence both are driver components according to Definition

- 3.4. The component C2, however, contains no external vertices but has two pullup vertices and is hence

, a pass component according to Definition 3-5. A more detailed example is given in Section 3.4.

3.2.3 Partitioning Algorithm and Its Complexity

In this section we will discuss the algorithm to partition the NMIOS network into MFB's and

PTB's. Instead of dealing with the network W(N,M) we will be concerned with the graph H (V ,E)

that represents the network. Obtaining the graph that represents the network merely involves altering

the data structure that represents the networks to the one that represents a graph. Once we have iden-

tified the D-blocks and P-blocks in H then, clearly, identifying the MFB's and PTB's is trivial Hence

we shall mainly concentrate on the procedure PARTITION given below that partitions the graph H

into several edge-disjoint subgraphs and labels each subgraph as either a D-block or a P-block.

Algorithm 3.1

Input: An undirected graph H (V ,E ) with
V, the subset of input vertices and
V. : the subset of pullup vertices.
V, : the subset of external vertices.

Output: A set of edge-disjoint subgraphs Z = 1H 1 ,H 2 ," ,H, } of H
and a function BLK : Z 1"D -block" ,"P -block* 1.

procedure PARTITION (H)
* begin

Ep -0

F I-SPLIT(H ,V)"
F 2 -SPLIT(F',Vp)
4-COMPONENT(F 2)

for each C, EV do
begin

l EVEnv ((c H)l
flp 4._ P r)
if (np = 1 & nE = 0) then

ED -ED UE(Cj)
else

Ep "-E UE(Cj)
end if

end
L1 -COMPONENT(F '-Ep)

L2 -.. _



64

for each H: EZ, do
BLK (Hi )-"D -block"

L:2 -COMPONEN'T(F -ED)
for each R1i E Z do i ,-

BLK (Hi )-P -block": '- Elul:,

return (.,BLK)
end

In the above algorithm we must ensure that any vertex that is split in a graph is, in fact, loop-

free. This is indeed the case since from Theorem 3.1 we have that the entire graph H is loop-free. The

time complexity of an algorithm to solve a problem is said to be 0 (f (n)) if the maximum amount of

computation time (or number of computation steps) taken by the algorithm is at most cf (n) over all

inputs of size n, where c is some constant. The space complexity is similarly defined as an upper

bound on the amount of space required by an algorithm to solve a problem. Two excellent references

on the subject of time and space complexity of algorithms are Aho, Hopcroft, and Ullman [51] and

Garey and Johnson [52 In most graph algorithms the input size n is taken to be IV I+IE 1, where IVI

and IE I are the number of vertices and edges in the graph respectively. The time (or space) complexity

is said to be linear if f (n) = n. The following theorem demonstrates that Algorithm 3.1, described

above, is of linear time complexity.

Theorem 3.2 The Algorithm 3.1, described above, correctly partitions the edges of H into driver

edges and pass edges and its time complexity is 0 (IV j+jE 1) where V is the set of vertices and E is the

set of edges in graph H.

Proof: The correctness of algorithm can easily be verified since it partitions the edges of H directly

according to Definitions 3.4 and 3.5. -

In order to discuss the time complexity, we will use the adjacency list [51] representation for

graphs. This consists of a list of vertices and a linked list of edges. Each element of the vertex list con-

tains the name (or label) of a vertex, say v, followed by a pointer to the location in the edge list of the

first edge incident on it. Each element of the edge list contains the name of the vertex adjacent to v. an

........ )

- . . *1o



65

edge label, followed by the location of the next edge incident on v, and so on. A null-pointer (0) indi-

cates that there are no more edges incident on v. This is repeated for each vertex in the graph. In case

"" of undirected graphs each edge <v ,w > appears twice, once in the adjacency list of v and once in that

of w. In this case there is a link established between the two locations. The total storage space required

by this representation is 0(IV I+IE I)-

The procedures SPLIT and COMPONENT are used several times in the above algorithm. If we

can show that the time complexity of each of these two procedures is 0 (IV I+jE 1), then we are done

*. with the proof since the rest of the computations in PARTITION can easily be verified to be of linear

. time complexity. Consider the operation of splitting a vertex v of degree k from a graph F. This

_. merely involves altering the data structure to represent the new graph and can be easily shown to have

- a time complexity of 0(k). Thus SPLIT (F ,V ') is of time complexity 0(q) where V 'V (F), and

-.. q = E dy (v). Since q < E (F )I we have that SPLIT (F ,V') is of complexity 0 (IE (F )1). We have

* therefore established that both SPLIT (H ,V ) and SPLIT (F ',Vp ) require 0 (IE 1) computation steps,

o -where E = E (H) = E (F 1). since the splitting of a vertex from a graph does not alter the edge sets.

The procedure COMPONENT (F) returns the various components in the graph F. A Boolean

--array of the vertices is maintained to mark a vertex as new or old, such that every time this array is

altered, a pointer exists to indicate the location of the first vertex marked new. Initially all vertices of

F are marked new. The procedure begins by starting from the first vertex marked new and using a

S-depth-first search (DFS) algorithm [51] to determine all the vertices connected to the starting vertex via

a path in F. These vertices induce a component and are all marked old. The whole process is repeated

by starting from the first vertex that is now still marked new until all vertices are marked old. Each

application of the DFS algorithm returns the list of vertices in a component of F in computation time

linearly proportional to the number of edges in that component [51]. Thus if one does not have to scan

the array to look for a starting vertex marked new, which is possible by maintaining the required -

pointer, the time-complexity of the entire procedure COMPONENT (F) is 0 (IE (F )I). Since this pro-

-.". ......................................... ........... .- .-. . .
.. * . . o~~~... .. .. .... .- . ..... o. . ... •..... ... .... ... *..*.•. -. -•.



66

cedure is used thrice in PARTITION (H) and each time on a graph with at most IE (H edges we can

conclude that the time-complexity of PARTITION (H) is 0 (IV I+IE I). [

To model the voltage-source elements connected to the input nodes of the network we introduce a

third type of block called input sources (SRC) consisting of only a node of input strength (and no

transistors). This node is said to be the output node of the SRC. Thus, in this section. we have shown

why and how we partition an NMOS network t?(N,M) into several subnetworks where each subnet-

work is one of three types, namely, MFB, PTB, or SRC. We have also demonstrated an algorithm by

which this partitioning can be achieved in computation time that is at most linearly proportional to the

number of nodes and transistors in the network. We will use the same symbol Z to denote the set of

partitioned blocks in the network and henceforth we shall refer to the partitioned NMOS network as

l(N, M,L) along with a function BLK: E-8NI FB6,'PTB",8SRC"I indicating the type of block.

Furthermore, INP( 0) and OUT( 0,) will be used to denote the sets of input and output nodes of sub-

network 1 -EL.

3.3 Ordering of Partitioned Blocks for Processing

Let 1(N,M,) be the NMOS network that has been partitioned into MFB's, PTB's, and SRC's. We

will say that the above network has been processed if the ternary digital waveforms at each external

node in the network are obtained. The network will be processed by processing each of its blocks in a

certain order. A block is said to be processed, if given the ternary waveforms at the input nodes to the

block, the waveforms at its output nodes are obtained. Thus, in order to process a block, the ternary

waveforms at its input nodes must be known. Hence, we must process the blocks in a certain order so

that this condition is always satisfied (whenever possible). In this section we will show when such an

ordering exists, and if so, how one obtains it.

Definition 3.9: For each node ni EN in the network let FOUT(ni) denote the fanout list for the

..................................................... .. .---



1 'C P Ir r

67

node which is the set of blocks in Z having ni as an input node, and let FIN(n1 ) denote its fanin list

which is the set of blocks with n, as an output node. Thus,

* - FoDrrni) = Ij n E" Pflj))

and

FIN(n,)=Ia n EOUTV 11j)i.

It must be noted that if ni is an ioput node of a PTB then the PTB would appear both in its fanin and

* fanout lists. Furthermore, either list could be empty for certain nodes; for example, both lists would be

empty for internal nodes of an MEB. Let (Onli denote an ordered triple ZXZXN. The ordered

dtriple (hich ni is said to be an 1/-triple if aaEFIN(n) and ClkEFOUT(n i). If a node ni is of

* pullup strength, ie. NODTYP(n1 ) =pullup, and if it is an ioput node of a PTB, ~Ik then the 1/0-triple

* (fl,,ljni) is said to be a nonadjacent I/O-triple. An I/O-triple that is not a nonadjacent I/O-triple is

said to be an adjacent /o-triple. It must be emphasized that in the case n is a pullup node that is an

ioput ofaPTBlk then the only nonadjacent I/O-triple in FIN(n)XFOT ni)X~ni is (fl fl i, the

remaining I/o-triples are adjacent. In this case, if there is another node n b that is not of pullup

strength. ie., NODTYP(nq) pullup, such that be appears both in its fanin and fanout lists, then the

1/0-triple (L0,jL,n^) is indeed an adjacent I/O-triple. The fact that a pullup node can be an ioput of

. only one PTB follows from the definition of the PT) , Thus we have partitioned the set of I/O-triples

t°°
. .

'"into two disjoint categories, namely, the adjacent ones and the nonadjacent ones. Using the adjacent

1/0-triples in the network, we will now introduce the notion of a good ordering in which the blocks of

a network could be processed.

Definition 3.10: A sequential ordering R on the blocks of a partitioned network C1(NKME) is a 1-1

function R: E-. 1,2, - - -,s9 where s =JEJ. The sequential ordering R is said to be a good ordering for

the network if R(aT )<R(Llk) for every adjacent 1/0-triple (FliN lhkni) in the network. We exclude

nonadjacent I/O-triples from our definition since in this case the equality will be forced (and so the

- .'U ,



.......... S -- -- -- -7 07

68

inequality will never be satisfied) for any sequential ordering.

A good ordering, as defined above, is clearly a desirable ordering for processing the blocks in a

network, since in this case, whenever a block is scheduled for processing. all the blocks in the fanin lists

of each of its input nodes have been previously processed, thus, providing input signals to the this

block. A good ordering, however, may not exist for some networks. As an example, consider an MFB

Ok in a network having its output node nP connected back to one of its inputs. In this case, the net-

work is said to have feedback, and the definition of a good ordering would be violated by the adjacent

1/0-triple (ilk,11kd) for any sequential ordering. Hence, there is no good ordering for such a net-

work. In the remaining part of this chapter we will show that a good ordering exists only for net-

works not having any kind of feedback, and proceed to handle the case of a network with feedback.

The latter is important since most of the networks designed in present day NMOS technology do have

feedback in some form or another, for example, flip-flops, ring oscillators, and most clocked sequential

circuits in general. To this end, we will use the notion of a directed graph derived from a partitioned

network. But first we review some basic concepts on directed graphs from Bondy and Murty [501 for

the sake of readers not very familiar with the subject.

3.3.1 Directed Graphs

A directed graph G, often abbreviated as a digraph, is formally defined as an ordered triple

(V (G ),A (G ), ) consisting of a nonempty set V (G) of vertices, a set, A (G), of arcs that is disjoint

from V (G), and an incidence function 'I6 that associates with each arc of G an ordered pair of (not

necessarily distinct) vertices of G. If a is an arc and v and w are vertices such that 'OG (a) (v ,w),

then a is said to join v to w; v is the tailof a, and w is its head and the arc is usually referred to as

simply (v ,w ). A digraph G' is a subdigraph of G if V (G ')QV (G ),A (G ')aA (G) and the incidence

function iJ's is the restriction of 4,G to A (G '). With each digraph G we can associate an undirected

graph H on the same vertex set ; corresponding to each arc of G there is an edge of H with the same .
,'-.

, ...



17-7 --- -F - Z 'v .

69

ends. The graph H is said to be the underlying graph of G. The terminology and notation for subdi-

graphs are similar to those used for subgraphs. Just as graphs, digraphs also have a simple pictorial

representation. A digraph is represented by a diagram of its underlying graph together with arrows on

its edges, with each arrow pointing towards the head of the corresponding arc. Figure 3.7(a) shows a

digraph G and its underlying graph H is shown in Figure 3.7(b).

A directed walk in G is a finite nonempty sequence W =(v oa 1,va,'' ,vk), whose terms

alternate between vertices and arcs, such that, for each i = 1,2, • , - k the arc a, has head v, -1 and tail v,.

Directed paths and cycles are similarly defined. The vertex vo is called the origin of the directed path

while vj is its terminus, and the rest of the vertices are called internal vertices. The integer k denotes

*t the length of the directed path. Once again, the integer k denotes the length of the directed cycle. A

i- directed cycle of length k is referred to as a k-cycle. If there exists an arc a in G such that

" I(a)=(v,v),thena isaloopinG,andv ,,v is an example of a one-cycle in G. As with paths and

cycles in undirected graphs, we will also refer to the subdigraphs induced by the arcs in a directed path

or cycle as a directed path or cycle. Further, for convenience, we will drop the term "directed" and refer

" to directed paths and directed cycles simply as paths and cycles.

A path in G with origin v and terminus w is called a (v ,w )-path. If there is a (v ,w )-path in G

* then the vertex w is said to be reachable from v in G. This, however, does not imply that v is also

reachable from w. Two vertices v and w are said to be strongly connected in G, denoted by v - w, if

each is reachable from the other. Clearly, - is an equivalence relation on V (G) and it partitions

V (G) into nonempty subsets V 1,V .  V , such that if v EV, and w is strongly connected to v in

G, then w must also be EV,. The subdigraphs G [V 1],G [V 2). G [V M] induced by the partition are

called the strongly connected conponents of G. Note, by definition, a vertex v in G is always

strongly connected to itself, i.e., v -v since one can always choose a directed path of length 0 and reach

- v from itself and vice versa. Thus, G [V, I is a trivial strongly connected component if it contains only -

one vertex, ie, V1 1. It can be easily shown that if G [V,] is a nontrivial strongly connected corn-

°-

.° ....

*°*',.



...... . . ~ 7. 7-

70

V2  

p'

a, a

a7 VI 15

a) 4 a V

.8g

V4

VS.

2

07 VI V3  V6  a Z pV,

V4

V5  FP-8524

Figure 3.7(a) : A digraph G (V -4 .i..
(b) : The underlying graph H (V 2)



71

ponent of G, i.e., ,Vi 1 2, then it must necessarily contain a k -cycle with k >2. Thus, presence of

nontrivial strongly connected components in a digraph implies the presence of directed cycles. We use

u-G to denote the number of strongly connected components in G. We say that G itself is strongly

connected if t&(G) = 1. Figure 3.8(a) shows a digraph which has three strongly connected components

as shown in Figure 3.8(b). Hence the digraph is not strongly connected, while its underlying

undirected graph is connected, since it has only one component. This clearly illustrates the difference

between strongly connectedness in digraphs and connectedness in undirected graphs.

The in-degree dG-(v) of a vertex v in G is the number of arcs having v as their head vertex.

Similarly, the out-degree dG+(v) of a vertex v is the number of arcs having v as their tail vertex. Just

as with undirected graphs, we shall use the symbols Y(G) and e(G) to denote the number of vertices

and arcs in G. We shall also drop the letter G from most of the notations whenever possible.

3.3.2 Presence of Feedback and its Detection

Let II(NME) be a partitioned network. Let Y denote the set of I/O-triples of the network, ie.,

Y= U FIN(n1)xFOLT(ni)x(nij, and let Ya denote the set of adjacent I/O-triples in Y.

Definition 3.11 A directed graph G (V A ,@' ) is said to be derived from an NMOS partitioned net-

work 1)(N,M, ) if there exist bijections O.-*V and O:Y -A such that the triple

V = ( ,fl ,flg )EYa is an adjacent I/O-triple in the network if and only if JG (#v)) = (O(WfI),O( .)

Thus for every adjacent I/O-triple v = ( fl ,n ) of the partitioned network, there is an arc

a = #(v) in the derived digraph G with tail vertex 0( () and head vertex 0(fl )- The digraph G is

said to be acycic if it has no directed cycles. Just as with blocks in a network, we have sequential ord-

erings on vertices of a digraph.

Definition 3.12: A sequential ordering R on the vertices of a digraph G is said to be a topological

'' -, A-
.................................................... '



72

2a

VIN

V,,

-U. -

(b) ~p-aua

Figue 38(a: A igrph
(b: Tethe0to0l onctdcmonnso

. . .. . . . . . . . . . . . .. . . . . . .



73

ordering if for every arc a with tail v and head w the strict inequality R (v )<R (w) is satisfied.
I.,

Theorem 3.3 If 11 is a partitioned NMOS network and G is its derived digraph, then the following

*S" three conditions are equivalent:

(1) there is a good ordering on the blocks of 11,

(2) G is acycic, and

(3) there exists a topological ordering on the vertices of G.

Proof:

We shall first show that (1) => (2). Suppose R is a good ordering on the set of blocks Z of the

network. We will show that the derived digraph cannot contain a directed cycle. Suppose G has a

directed k-cycle. If k =1, then there is a loop a with both ends at some vertex v. By Definition 3.11,

there exists an adjacent I/O-triple 0-'(a) =(L1j,10,i ), where ilj = 0-1(v ) in the network. This adja-

cent I/O-triple would clearly violate Definition 3.9 for R. If k > I then let v denote the vertex in the

k-cycle C whose corresponding block , = 0-'(v) is ordered first by R among blocks corresponding to

the other vertices in the cycle, i.e, R(0-1(v )) < R(0~'(w )) for all w EC. Since k > 1 there is an arc a

. from w to v in the cycle (and hence in G ) with w ;dv. But this would mean that there is an adjacent

I/O-triple (01 ,fl ,n,( ) in the network where fl 0-(w), thus leading to R( fl 1 ) < R( fl ) which

contradicts the above choice of the vertex v. Hence the proof by contradiction.

The fact that (2) > 3) is a well-known result on digraphs and can be found in most standard

textbooks on graph theory, such as [50]. Hence we will only outline this part of the proof. Suppose G

is an acyclic digraph. Then there must be a vertex of in-degree 0 in G, since, if not, consider the long-

* est directed path in G. If the first vertex of this path does not have in-degree 0, then either G has a

cycle or a longer path. Hence pick a vertex, say v, whose in-degree is 0. The rest of the proof that G

has a topological ordering is by induction on the number of vertices of G. The basis for induction is

clearly satisfied for all digraphs containing only one vertex. Now suppose that all acyclic digraphs on

,..........................,...*.---- l....-..



74

less than v vertices have a topological ordering. Let G have v vertices. Then G -v has no cycles and

has v-I vertices, and so must have a toplogical ordering, say R'. Now let R be an ordering of G such

that R (v )=1 and R (w )=R w )+1 for all other vertices w v in G. Then clearly, R is a topological -

ordering for G .

The fact that (3) ,> (1) follows trivially from the definitions of good orderings of M, topological

orderings of vertices in G and the fact that G is derived from Gl. 0

We now introduce the concept of feedback in a partitioned network.

Definition 3.13: A partitioned NIOS network 11 is said to have feedback among its blocks if its

derived digraph G has directed cycles. Thus 0 is feedback-free if G is acyclic and is internal

feedback-free if G has no directed loops. A block Q EjE is said to have internal feedback if the

corresponding vertex O(1 ) in G is incident with a directed loop.

It is clear that this definition of feedback in the networks conforms to the standard notion of

feedback in circuits. It should also be clear now why we only considered adjacent I/O-triples while

constructing the derived digraph. Had we chosen all I/O-triples to create arcs in G we would have

directed loops corresponding to every nonadjacent 1/0-triple. This would then amount to declaring

that a network has internal feedback simply because it has a pullup node that is an ioput of a PTB,

which does not conform to our usual conception of feedback in circuits. We are now ready to say that

a network has a good ordering if and only if it is feedback-free. We state this result without proof

below, since it easily follows from Theorem 3.3 and the definition of feedback-free networks.

Theorem 3A: A partitioned network W(N,M, ) has a good ordering on its partitioned blocks if and

only if it is feedback-free.

A good ordering of the blocks in a feedback-free network can easily be obtained by first placing

the vertices of the derived digraph (which in this case will be acyclic, by definition) in a topological

order and then placing the corresponding blocks of the network in the same order. If, however, the

~~~~~~~~.. ...... ,. .... ........ ...... =........-......4= .. .... :..-.'


Wo .T

75

network has feedback (which is the more common case in the present-day NMOS designs), the derived

digraph contains directed cycles and hence no topological (good) ordering exists on its vertices (blocks).

In this case, therefore, one must detect the blocks in the network that are within feedback loops, treat

these as special blocks and and place the rest of the blocks in a "good" ordering. We formalize these

ideas below.

Definition 3.14 If V, is a set of vertices in a strongly connected component of G, then the

corresponding set Mi = 0-t(v) v E V,) of blocks in X is defined to be a strongly connected component

(SCC) of the network. Thus we have a partition I,.2, , ,. of the blocks in L

Let V 1,V . VA denote the partition of the vertex set of the digraph G into strongly connected

components. We define the condensation of G to be a digraph G consisting of vertices w 1,w 2, W

with an arc having head w; and tail w if and only if i ;dj and there is an arc in G with head x E V,

and tail y E V). Consider the digraph G shown in Figure 3.8(a). Its condensation G, shown in Figure

3.9, is clearly acyclic. We will show that, for any digraph G, its condensation G is acyclic t-id hence,

from Theorem 3.3, it has a topological ordering, which corresponds to an ordering of the SCC's of T- To

this end we need the following intermediate result.

SLemma If C denotes a directed cycle in the digraph G then all its vertices must be within a strongly

connected component of G.

Proof (See 1 4). Consider any two vertices, say, x and y in V (C). Since C is a cycle, there is a

directed path from x to y and also a return path from y to x in C. But C is a subdigraph of G and

* hence x is reachable from y and y is reachable from x in G. Therefore, by definition x and y must

be in the same strongly connected component. 0

Theorem 3.5: The conde.sation G of any digraph G must be acyclic.

Proof (See [50,531). By definition, G has no directed loops, and so has no one-cycle. If C is a k-cycle

in G with k > 1, then the vertices of G in the set U _v must belong to a directed cycle and hence,
wEC-If"' ,.Eg .

.- '."' . . . -

76

W2

W3 FP-8536

Figure 3.9: The condensation of the digraph G in Figure 3.8(a)

. --- -
............. F ! - -- - 1 N .- J-

77

from the above lemma, must all be in one strongly connected component, which is a contradiction. 0

Our strategy to schedule the blocks of E for processing is to start by detecting the strongly con-

nected components in the derived digraph G. We then obtain the condensation of G and proceed to

find a topological ordering in G. This then corresponds to some ordering on the SCC's of L The pro-

cessing of the network 11 then begins by processing the SCC ordered first, followed by the one ordered

second and so on. An SCC is said to be simple if it contains only one block of E and that block has no

internal feedback. A simple SCC is processed by algorithms described in Chapter 4. If an SCC is not

simple then the blocks within it are processed using special techniques described in Chapter 6. The

algorithm presented below, well-known as Tarjan's algorithm [311 partitions the vertex set of any

digraph into its strongly connected components. A vertex w is an in-neighbor of the vertex v in G if

* (w ,v) is an arc of G and is an out-neighbor of v if (v,w) is an arc of G. We use Adj-(v) and

Ad j+(v) to denote the sets of in-neighbors and out-neighbors of the vertex v in G. In Tarjan's algo-

rithm two integers k Iv] and L Iv I are computed for each vertex v in the digraph G, known as depth-

first number and lowpoint [53] respectively. A digraph G is said to be a rooted digraph if it contains a

vertex, say root , such that all vertices in G are reachable from root. In the case of the derived digraph

i G we try and make it a rooted digraph by inserting a new vertex called root and directing arcs from

this new vertex to every vertex of in-degree 0 in the original G. In the original derived digraph G

' every vertex corresponding to an SRC block in the circuit must indeed have in-degree 0 and so the

above notion is well-defined. Further, if there is a vertex that is not reachable from the new vertex

root then it is also not reachable from any of the vertices corresponding to the SRC blocks in the net-

. work. This means that the input signals would never propagate to such blocks in the network and so

they need not be simulated. Hence we are only interested in simulating those blocks in the circuit that

, correspond to vertices that are reachable from the vertex root in the above new digraph. We will still

"* . refer to the modified derived digraph as G itself and will assume that it is a rooted digraph.

" "-n" h'...,h.. lad,,i,.-ifa inlmlalum'hn|,lii' i-"; "-................. .. .

r7 -7 P7

78

Algorithm 3.2

Input: A rooted-digraph G (V ,A) with a special vertex root.
Output: A partition of V -root into strongly-connected components

V

procedure SCC_-DETECT (G)
begin

for each vE V do
MARK [v 1-"new";

initialize STACK to empty-,
v '-root;
DFS (V)

end

procedure DFS (0)
begin

MARK (v I-"old,;
k [vIJ'-i;
i '-i +1;
L [v'-k [v I
push v on STACK,
for each vertex w E AdiGr(v) do

begin
if MNARK [w] "new" then

DFS (w)
L [v].-MIN (L [v IL [w Ah

else if k[w]I < k v Iand w ESTACK then
L [v '-_MIN (k [w 14 [v] A

end if
end

if L[v k [vlIand v vroot then

V-
repeat

pop x from STACK;
V M*-V U Ix I

until x v:
end if

end

The above algorithm terminates for finite digraphs and does so with linear time complexity and,

furthermore, correctly partitions the vertices of the digraph into strongly connected components. This

fact follows from the theorem below which we state without proof. Its proof can be found in several

books on graph algorithms such as [311 [51], and [53].

. 7;

79

Theorem 3.6: The procedure SCC_DETECT (G) partitions the vertices of V into its strongly con-

nected components correctly with time complexity of 0 (max(IV I,IA 1)).

We now describe an algorithm that creates a new digraph G which is the condensation of the

digraph G. We will use two procedures CREATE (x) and ADDARC (x ,y) to create vertices and add

arcs in the data structure that represents G. The data structure is the same as that for undirected

graphs explained in Section 3.2.3, consisting of a list of vertices, and for each vertex an adjacency list,

implemented as a linked list, of the out-neighbors of the vertex.

Algorithm 3.3

Input: A digraph G (V ,A) with a partition V V,V 2'.... V,
of its vertex set into strongly-connected components.
A function SCCOMP : V - 1,2,.. such that for any
vertex v EV, if i - SCCOMIP(v) then v EV i .

Output: The condensation digraph G of G.

procedure CONDENSE (G)begin V() -

A (G)-e;

for i '-I until z do
CREATE (wi)

for each arc (x,y)EA (G) do
begin

i -SCCOMP(x >,
j -SCCOMP(y,.
if i j then

ADDARC (w,wj)
end if

end
return G;

end

The above algorithm clearly is of time complexity 0 (v+e), where i = IV (G)I and e = JA (G)I.

We finally present an algorithm to produce a topological ordering on the vertices of the digraph G

which is known to be acvclic from Theorem 3.5, and hence, from Theorem 3.3 must have such an ord-

ering. This algorithm uses a QUEUE to store some vertices. One could also use a STACK instead which ,'

would result in a different ordering. We use d"(w) and Adj +(w) to denote the in-degree and out-

neighbors of vertex w E V (G), ie. we drop the subscript G from the usual notations for convenience.

- 7. WoV *,

80

Algorithm 3.4 [51]

Input: An acyclic digraph G (V A) with --IV .
Output:A 1-1 function R : V -1,2, ... qi such that

for every arc (wi,wj) in A, R(w,)<R(wj). '* '

procedure TOPORDER (G)
begin

k -1;
for each vertex wi, EV1 do

begin
1 [wi]-d -(w,);
if d -(wi) 0 then

push w, into QUEUE;'
end if

end
while QUEUE is not empty do

begin
pop vertex w, from QUEUE;
R[wj]-k;
k -k +1;
for each vertex wk EAdj *(w,) do

begin
[Wk]-, [Wk}-1;

if 1 [w4 1=0 then
push w. into QUEUE;

end if
end

end
return R;

end h
The topological ordering R on G provides us with an ordering ORD on the set of SCC's

1tIZ 2, ... ,.) such that ORD(Z:-) -R(wi), where w, is the vertex of G corresponding to the SCC

34 An Example to Illustrate Partitioning and Ordering

In this section we will consider the NMOS network shown in Figure 3.10 as an example to illus-

trate the partitioning and ordering algorithms described in the earlier sections of this chapter. This net-

work consists of 17 nodes N--n,nI,... ,n1 6) and 20 transistors M=fm 1m 2 ,... ,m 20 j. The set

ME=Ml,m2, ... , mis) is the set of enhancement devices and M --m1M, ... , M20 1 is the set of deple-

, ..*

"- 81-'

tion devices. The set of nodes can be partitioned into three classes according to their strengths, namely,

the nodes of "input" strength

Nj= Ino,nn22,n 3,n 4,n5 ,

the nodes of "pullup" strength

Np-"njn6,n,n~n 1),

and the nodes of "normal" strength

NN- {n11,n12,n1 3,n 4,n 5,n1 ,6 ,"

The node no is the ground node and nj is the supply node to the network. The set of external nodes in
A

- this case is

NE--:j,n,nn4InIIn 1 2)

The graph H representing this network is shown in Figure 3.11. We only show the nonisolated

vertices in the graph. Also, we refer to the vertices and edges of the graph as nodes and transistors in

the network, respectively, for the sake of convenience, i.e., in this case the bijections 0 and 0 used in

Definition 3.2 are both identity mappings. The graph H7 obtained by splitting the nodes of input

strength from H is shown in Figure 3.12 and the graph HIp is shown in Figure 3.13(a). The graph

Hp has seven components. The subgraphs of H induced by the edges in each of these components are

_$. shown in Figure 3.13(b). Among these subgraphs, the sugraph C H has two external nodes while C

. has two pullup nodes, and so the corresponding components C 2 and C5 are declared as pass com-

ponents. The rest of the componLnts can easily be verified to be driver components. Thus, the set of

driver transistors is

MDf=mlm 2, 3,m 4,mS$M M,,M7 ,msgm 9 ,mlO)

and the set of pass transistors in the network is

-.
...

82

n6 7 "'a in1 3 Mn . n9mM 9 n, 0

n2
MMaMI

n4

FP-41532

Figure 3.10: An example of an NMOS network

83

nap

8 Pullu Ver1e® ~ ~ M ExenM1et3 P84

M4 M-

Fiur 311 Te rah rprsntngth ntwrkinFiurm31

.............
..-......

84

133M1
in ,, mu 12 n

noCI 0 on " o n
m 14Y *M, 7n

MI is

MIS Mg M1

Figure 3.12 -The graph i~ for H in Figure 3.1 1

": ': 1

85

% -. ..

- -. N

•nil

,,4 n,, n,,i-1; q T\
1111/1111iL, \ %I\...

\f 0 no,

C, C4

m | N - - -- "

\-- ,., M

C" in13 in14, /m I 1 1

m b) I 1

.- .- \ C

Co o C
C04 C" FP-987wo

Figure 3.13(a): The graph H 1 for Et in Figure 3.11
(b): The corresponding edge-induced subgraphs of H

86

Me= {m1 1 ,m 1 2,m 1 3,M 14 ,M 1 5 .

It can easily be verified that the subgraphs C and C (are the P-blocks of H and the rest of the sub-

graphs in Figure 3.13(b) are the D-blocks of H. Thus the transistors in the network can be now parti-

tioned into seven blocks, two of which are PTB's and the remaining five are MFB's. We provide below

a listing of the transistors in each block along with the set of its input and output nodes. In the case of

an MFB the first transistor in its list is a depletion load device.

Block Transistors Input Nodes Output Nodes

MFB1 m16,mi'm2 n2,n 3 U6

SFI 2 m 1 7 ,n1 3 n 4 n-"

MIFB3 in 1 8 ,M 4 mM,mtim n 4 t-,nLoAtlD11 12 rig

MF 4 Mf1t9 ^1 ns n9fl -
MOS m 20 ,m10 n9 11_o
PTBJ m IIM1 2 n 3 ,n 4 5t2,n._ .
PTB2 in13 _14____ _____n_-

In addition to the seven blocks given above, the network also has five SRC's which we list below

along with the node of input strength in each of them.

Block Output Node
SRC1 n
SRC 2 n2
SRC 3 n3

SRC4 n4
SRCs n5

We have thus partitioned the network into five SRC's, five MFB's and two PTB's. We are now

ready to form the fanin and fanout lists for each node in the network. The table below gives these

lists for each node which has both its fanin and fanout lists nonempty.

. "

~a.~~~ , a.....

87

Node 1Fanin List Fanout List
n-C , -- F-1I

n3 SRC3 MFIPB
L4 SRC4 NF 2 >B 3 TB PTB2
ns SRCS MFB4,PTB2

lab MFBIIPTI PM,
n,7 NOS, NM 3,PTB2
flg MFB3,PTB 2 PT 2
n 9 NOMFBJT PTB"'- 5

n MFB5 MFB3
PTB1 MMFB 3

U12 PTB __________j B 3

From the above table, we see that, node N6 is an ioput of PTB1 and nodes nf8 and n9 are ioputs of PTB2.

Hence, out of the 22 I/O-triples we get three nonadjacent triples, namely, (PTB1,PB 1, 6),

(PTB,P'r 2,n,7), and (PTB2,P'r 2,ns). The remaining 19 triples are adjacent I/O-triples. Given the

adjacent I/O-triples, we can construct the derived digraph G as shown in Figure 3.14. This digraph

contains ten vertices and 19 arcs. We also include a vertex *root and join it to the five SRC vertices as

shown in the same figure. Using Algorithm 3.2 on this digraph gives us ten strongly connected com-

ponents which we list below.

5CC Blocks
., MSRC"

-2 SRC2
E3 SRC 3
ZC4 T4
"" nSRC F

n MFBIMTB 1 T
n, [MFB 3,TB

n+~ Z MWr. B2.-

Z8 FB4
E9 PM
E10 nWBPBMFB 3 -2

Thus. X10 is the only SCC that is not simple. Since G has no self loops, the network has no internal

feedback. Note that had we considered the adjacent I/O-triples in constructing the derived digraph, we

would get self loops. The network, however, has an CC that is not simple, and hence, has feedback

among M -FB3, PTB2, and MF. The condensatici digraph G is shown in Figure 3.15. From Algo-

. '.. .

................................. cldeavete "oo"an jinitt te iv SCvetiesas

-+ how i.thesa..fgur..UingAlorihm..2.n.hisdig.phgi.s ...tn.sronly onectd cm- .. p

".,... .,2

MF88

Figure 3.14 The derived graph G

.....

RD-R161 371 SITCH-LEVEL TIMING SIMULTION
OF NOS VLSI

2
(METAL OXIDE-SEMICONDUCTOR VER..(U) ILLINOIS UNIV RT
URBANA COORDINATED SCIENCE LAB V B RAO JAN 85 R-1032

UNLRSIIDM91-4C-6±49 F/G 915 M

MICROC.Y.REOLUTIN T S CHA-111111. ~u11.2

-AIIA.BrAUO TN} 13 6 -A

...8

jjj1.25 111111'.4 jjl.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAP.OAROS -'963-A

..%''3 . .&N%'

9

We wWS

W.4

Figure 3.15: The conidensation graphG

90

rithm 3.4 on G we get a topological ordering R such that R (wi)i i =1,2,..._ 10. This induces an

ordering ORD on the SCC's of the network such that ORD(Ei) = i; i=1,2,..., 10, in this case.

3.5 Conclusions

In this chapter we began by representing an NMOS network II(NM) as a set of nodes N inter-

connected by a set of NTIMOS devices M. We then partitioned the set of enhancement transistors into

driver transistors and pass transistors. Following this, the driver transistors are grouped together to

form MFB's while pass transistors are grouped together to form PTB's. Another type of block, called

SRC, is introduced to model the input voltage sources connected to the input nodes of the network. The

partitioned network is represented as Il(N,M,Z), where Z is the set of partitioned blocks which could

be MFB's. PTB's, or SRC's. We then introduced the concept of feedback among blocks in the network

and showed that a good ordering for processing the various blocks is possible only for feedback-free

networks. In case the network has feedback, the set of blocks is partitioned into its strongly connected

" components (SCC's). Finally, we came up with an ordering of the SCC's for processing. The partition-

ing and the ordering of the blocks have both been shown to take computation time that is linear in the

number of circuit nodes and number of devices.

A --- - - - r r:. "- q * *- * 7' * -..- -

91

CHAPTER 4

SWITCH-LEVEL SLMULATION,

Let O(NME) be a partitioned NMOS network in which the set of blocks X has been further

partitioned into its strongly connected components (SCC's) E-,E 2, .. E,, Let ORD denote the order-

ing in which the SCCs have been scheduled for processing. If an SCC is simple, i, it consists of

exactly one block (an MFB, PTB, or SRC) with no internal feedback, then it is simulated at the switch

level by algorithms described in this chapter. By simulating or processing a block, we mean obtaining

the ternary digital waveforms at the output(s) of the block given those at the inputs to the block over

the entire time interval of interest. In case the SCC is not simple, a special event-driven windowing

technique, to be described in Chapter 6, is used to simulate the various blocks within the SCC. This

- special technique partitions the entire time interval into several windows and uses the algorithms

- described in this chapter to simulate only the active blocks within each window.

4.1 Ternary Signals and Sequences of Transitions

Let (L,V,A,-.) denote the ternary algebra on the set L = {0,u,1j with binary operations OR (V),

and -ND (A), and a unary operation INVERSE (-,), as defined in Section 31. Let [totf] denote the
'. o.

- time interval in which the network is to be simulated. At each time instant, the signal at a node in the

network is assumed to occupy a ternary value from 1, i.e., a 0, u, or 1, while this value might change

with time. Such a signal is called a ternary signal. A node n1 .N is associated with a ternary digital

waveform, denoted by X, which is a mapping Xi : [totf]-L, such that Xj(t) is the ternary value of

the signal at node ni at time tE[t, tf A transition in a ternary signal is defined as a change in the

ternary value of the signal taking place at a certain time instant. Thus, to completely specify a

SeS

92

transition, we need to specify both the type of transition and the time at which it occurs. A transition

type is an ordered pair (x ,y) where x ,y EL and x Oy. There are six possible transition types, namely

(O,u),(u,1),(lu),(u,O),(O,1),(1,O). In accordance with the fact that a ternary digital waveform has a

corresponding analog waveform, given by the inverse of the transformation in Equation 3.1, only the

first four out of the six types of possible transition types are allowed. These allowable transition types

are (Ou),(u,1),(1,u) and (uO). We will consider only allowable transition types and, henceforth, drop

the qualifier "allowable" whenever possible. For the sake of convenience in implementation, the entire

simulation time interval [tot] is discretized by choosing a minimum resolvable time (MRT), denoted by

hMM, so that a time point t can be represented by an integer k if tE[to+k*hmg,, to+(k+l)*hmm). Thus

two different time points within this interval are considered indistinguishable and are represented by

the same integer k and vice versa. If K - (tf-to)/hmt,, then the time at which a transition takes place

within [tt] can be denoted by an integer kE[K]=O,1,2, .. ,K). The value of h. is usually

chosen to be very small, typically one or two orders of magnitude smaller than the rise or fall times of

the analog signals. We can now represent a transition a as an ordered triple (x,y,k)ELXLX[K] where

(x,y)ELXL is the transition type and k denotes the time of its occurrence. Furthermore, x is the initial

value of a and y is its final value.

Let S - a,a2, ap be a sequence of transitions where each ai=(xy~jki). The sequence S is

said to be chronological if k, <k 2 < ... kr A chronological sequence is said to be compltible, in addi-

tion, if (xjy i) is an allowable transition type for each l 4j p and yj=xj~ l for each 1j~p-l. In a

compatible sequence therefore, the final value of every term in the sequence is equal to the initial value

of the succeeding term.

Let tk - tu+kxh.. and let X(tktE[t0 ,tt be a ternary signal waveform such that no more than

one transition occurs in a time interval [tktk+1) for any integer i. We will call such a waveform a

proper waveform. Clearly any ternary waveform will be a proper waveform if hmm is chosen as sug-

gested above. Henceforth, we will assume that such an hmm has been chosen and that all ternary

°• . • o•..*l . . .% - . .*-*.. . . . - -- - , - . . , - . , - ' - , . -.

*. 93

waveforms are indeed proper. In a proper waveform, therefore, if a transition occurs at a real time

tEltktk+.) then any other transition must occur in some other interval disjoint from this. We use the

notations t- and t+ to denote time points just before and just after the time t. We represent a proper r

waveform X by a sequence S of transitions as follows:

1. Initially, S'-0, and k--O.

2. If there is a tE[tklt+1) such that Xt-) ;d X(t+), then set x--X(t-), y.-X(+), and append the

transition a=(xyk) to S.

3. Set k--k+1 and repeat step 2, until kK.

If, however, a ternary signal is constant throughout the time interval [tltf] then it does not

" undergo any transitions. We represent such a signal by a sequence consisting of a single transition of a

suitable type taking place before to. Thus a waveform that is always 0 is represented by (U0O,-1), and

* a constant 1 signal by (uj,-1), where the integer -1 represents all time points t<t. A constant u sig-

nal, though seldom occurring in practice, can also be represented either by (0,%-1) or (l,u,-). We

will adopt the convention that -1 will be used to denote transition times in the case of constant signals

only.

Let Sa z- a,a2..., ap and Sb P 1,P2, ... Iq be two sequences of transitions, and let X, and

Xb denote their corresponding ternary digital waveforms respectively. The waveform X, such that

X.(t) = Xa(t)\/Xb(t) for each t E [ttf] is called the "OR" of X t, b- Similarly a waveform Xd is the

"AND" of XXb is Xd(t)= Xa(t)AXb(t) for each tE[%ttfl The sequence S, of transitions that

represents X, is denoted by SVSb and Sd that represents Xd is denoted by SaASb. Also, we can define

the "LNVERSE" of a sequence S, representing the waveform X, to be the sequence of transition, denoted r.

by --S,, representing a waveform X, where Xe(t)= -'X.(t) for each tlE[totf We therefore have two

binary operations V and A and one unary operation -' on sequences of transitions. As an illustration

consider two (compatible) sequences of transitions

*[,! ..- :-.. . . 9- ...
-,.:,....-.-....., l -kkm hlllmlmmlllmml .. 9 - .

94

S= O,,10), (u,1,70), (1,u,100), (u,1,110), (i,u,500), (u,O,600)

Sb = (1,u,200), (u,0,300), (0,u,700), (u,1,800).

The corresponding waveforms X, and Xb are shown in Figure 4.1. The sequences obtained by perform-

ing the "OR" and "AND" operations on these two sequences are

S.VSb = (lu500), (u,0,600), (Ou,700), (u,1,800)

and

ShASb = (Ou,10), (u,1,70), (1,u,100), (u,1,110), (1,u,200), (u,0,300)

respectively, and their corresponding waveforms X, and Xd are also shown in Figure 4.1. The sequence

obtained by performing the "INVERSE" operation on S. is

-S (1,u,10), (u,0,70), (0,u,100), (u,0,110), (O,u,500), (u,1,600)

which is obtained by simply inverting each ternary value in every term of the sequence.

Two sequences S, = {iPI and Sb (18i }f= with the same number of terms, and where

aj-=(xi,yijki) and ji=(x'i,y'i ,'i), are type-equal if xi=x'i and yi=y'i for each 1 (i-p and time-equal if

ki=k'i for each 14 i p. The two sequences are equal if they are both type-equal and time-equal. It

must be noted that two sequences can be compared for equality if and only if they have the same

number of terms. For example, the two sequences

(Ou,100), (u,1,200), (1,u,300), (u,O,400)

and

(Ou,11O), (u,1,190), (iu,250), (u,0,360)

. are type-equal but not time-equal, whereas

(O,u,i00), (u, 1,200), (1,u,300), (u,o,400)

and

(Ou,100), (u,1,200), (1,u,300), (u,1,400)

are time-equal but not type-equal.

95

V.d

.- x 1....aJ

a a

I .aCI I

'0 294 o 88Jo

F a

I Ia

,.: X ,: , a
,-. C- ad " "*"' i

a a"

, a

a I

a a

"' a

I Ix '- ".

-I I I I I I ' !

-*-
... :Il e

We now introduce notions of complete and partial pairs of transitions in a compatible sequence

* Sa a1,az,., a., where ec = (xy,,k,).

Definition 4.1 Two successive terms a, and aj4.1 in a compatible sequence with x E 10,11I are said to

form a complete pair of transitions if y, + l=-i and a partial pair if y, 1 =x_. It must be noted that

* since the sequence is compatible and the transition types are allowable, the above choice of xi forces

For example, the pair (Ou,i100) , (u,1,200) is a complete pair while (0^1~00) , (u,0,200) is a par-

* tial pair. A complete pair of transitions corresponds to an analog waveform crossing both the threshold

limits, thereby completing the transition. whereas a partial pair represents a potential glitch or a hazard

* [291

* Definition 4.2: A compatible sequence of transitions is said to be a complete sequence if it has no par-

tial pairs. The completion of a compatible sequence is the maximal compatible subsequence consisting

* of only complete pairs of transitions. For example, the completion of the sequence

(0,u,100) , (u,1,200) , (1,u,250) , (u,1,260) , (1,u,300), (u,0,350) , (Ou,400) , (u,0,420)

is the sequence

(0,u,I00) , (u, 1,200) , (l,u,300) , (u,0,350).

Given two compatible and complete sequences Sa-' ((X0Ykd)jP Iand Sb= (Xyk)i i d that are

type-equal but not necesrily time-equal, we define a measure on the difference in transition times

between the two sequences to be

--
P(S., 5 b) maxl' I (4.1)

I4i~p ki

* It must be noted that the above measure is defined only for complete sequences which are type-,equal.

Two compatible sequences (not necessarily complete) are said to be time-comparable if their completions

are type-equal. If S, and Sb are two time-comparable sequences, i.e, their respective completions S. and

* -- '..

97

Sb are type-equal, we then define an extended measure to be

A3S,Sb) = 0SS'b)- (4.2)

As an example, consider two compatible sequences

S.=(O, u,4O) (uO,50) (Ou, 1OO), (u,1200), OLu,3oo), (u,0,400) .1

and

Sb=!O,u,110), (u,1,195), (1,u,260), (u,1,280), (1,u,330), (u,0,450)

whose completions are

S .=(O,u, lOO), (u,1,200), (I,u,300), (u,0,400)---

and

Sb-(O,u, 10), (u,1,195), (l,u,330), (u,0,450)

respectively. Since Sa and S'b are type-equal we have S, and Sb are time-comparable and, in this case,

(SlSb)=P(S,,Sb)= 12.5%.

4.2 Switch-level Simulation of a Block del

Let Si denote the sequence of transitions, computed by switch-level simulation, and let Vi be the

actual analog waveform at a node n, N in the network. We can obtain the three-state digital

equivalent of Vi using the transformation in Equation 3.1. Let S1 denote the sequence of transitions

corresponding to this ternary digital equivalent. We define the aim of our switch-level timing simula-

tor to compute Si that is time-comparable to Si, such that, A(S1 ,S) <e where e is a measure of the accu-

racy of the timing in the simulation. It must be noted that we are only interested in guaranteeing the

timing in case of complete pairs of transitions and not for partial pairs. However, partial pairs will be

included in the sequence to warn the user of a possible glitch or hazard at a node in the network. In

this section we will discuss algorithms that will compute a so-called zero-delay sequence of transitions

at the output nodes of a block in a simple SCC of the network. The complete pairs of transitions are

then delayed by a delay operator to be discussed in the next chapter, followed by a filtering operation

,...............-....'......-...-...-.......-.-..-...-....-.-..-........-............--...-.-..-~~~~~~~~...........................-,,,.s.............., ,maa.m..........~ll I

98

to produce sequences that represent realistic waveforms and improve the accuracy of the timing in case

of partial pairs of transitions.

4.2.1 Simulation of an SRC

Let Q, be an SRC with output node n, in a partitioned NMOS network. Since an SRC, by

definition, does not have any inputs, its corresponding vertex cannot be in any directed cycle in the

derived digraph. Let V o denote the analog waveform at node n. during the time interval [tOtl. Since

NODTYP(n) = input a description of V. would be available in the input description of the network.

Thus, simulating an SRC would simply amount to computing the sequence of transitions So directly

from the analog waveform V o as described below.

Algorithm 4.1

Input :An SRC fl) with output node n,-
an analog waveform Vo(t) for t E[totf]
and two threshold voltages VL and VH.

Output: A sequence of transitions S, representing the ternary
equivalent of V.

procedure SRC SLM ((I)
begin

tb'~tO,
nd-constant*;
repeat

ta -tb;
tb,_ta+hmm;
v, .--Vo{ t,) -

Vb-Vo(tb)
V, "Va-VL;,""-

V 2 Vb-VL;

V 3*- -- V;
V4'--Vb-VH"

if (v,40 & v2 >O) then
append (Ouk,) to S.;
ind -- 'variationo;

else if (v 3 <O & v4 >O) then
append (ulk) to S;-

99

ind -"variation':
else if (v 3 > 0 & v4 < O) then

append (l,uk) to S,;
m d -'variation;

else if (v 10 & v,<O) then
append (u,O,k) to S);
ind-variationo;

end if
k*-k'+ 1:

tb-b+hmm;

until tb > tf;
if ind=*constant* then

if (vl <0) then
append (uO,-) to S,

else if (v 1 0 & v 3<0) then
append (Ou,-l) to S,;

else if (v 3>0) then
append (u, 1,- 1) to S;

end if
end if

end
- In the above algorithm, the indicator ind is used to decide whether the analog waveform crossed

any of the threshold limits. In case it does not, then the sequence is set to the appropriate transition

occurring at integer time k -l, i.e. at real time t <to. We now state the following theorem, the proof

of which is fairlv obvious, but it is an important result to be used in the later sections.

-. Theorem 4.1 The sequence S, computed by Algorithm 4.1 is a compatible sequence and represents the

ternary equivalent of the analog waveform V.

4.2.2 Simulation of an MFB

Let Of be an MFB that is to be simulated with n, as its (unique) output node and INPalf) as its

input nodes. For each input node n let Sj denote the sequence of transitions at that node, and let zi EL

* denote the ternary value of the node signal at some time instant. Also, let S, be the sequence of transi-

tiorns to be computed and z, denote an instantaneous value of the signal at node n. Let INTERN

denote the set of internal nodes within the MFB. As mentioned earlier, an MFB can be viewed as a net-

work of switches between the drain and source nodes of its driver transistors whose conduction states

S -.•

100)

are controlled by the ternary signals at the gate terminals. Since an MFB has no external nodes, by

definition, the sequences at its internal nodes need not be computed. The fundamental idea in conven-

tional switch-level simulation is that the signal at a node can only be changed by a signal at a stronger

node and can change the signals only at weaker nodes. In a proper MFB the only node stronger than

the output node (which is a pullup) is the ground node whose signal is always at 0. Hence, to compute

z, one only has to compute the state of conduction of the switches connecting the output node to the

ground node. Thus, we can think of z0 to be a special kind of a ternary function of the input signals

zi :ni ELNP(0 f)I. If the MFB is not proper, its output node signal is always at 1 irrespective of its

input signals since no internal node can influence the value of this signal. This specialized structure of

an MFB enables us to use a much simpler and more efficient algorithm for its simulation rather than

using the more complex conventional switch-level algorithms such as the ones used in MOSSIM [191 or

EXPRESS-Il [25].

Before we describe the actual algorithms to simulate an MFB we digress briefly to study the pro-

perties of some ternary functions. Let p be a positive integer and let LP denote the pth Cartesian power

of L i.e. LP is the set of all ternary vectors (z,z,, .. . zP) where zEL for each i=1,2 ... ,p. A p-

variable ternary function f(zl,z,, ... , zP) is a mapping f:LP-L

Definition 4.3: A p-variable B-ternary function is a p3-variable ternary function which is either con-

stantly 0 or 1, or obtained from its arguments z19z2, ... , zP by successive application of the algebraic -

operations of V, A, or -. An example of a five-variable B-ternary function is

f(Z1 z2,Z3 ,Z49Z5) ---. (zIAZ3)\/(Z2AZ4)\/(zIAz5AZ4)\/(Z2 AZ5 AZ3)). (4.3)

Associated with each variable zi are two literals, namely, zi and -,zi. Thus a p-variable B-ternary

function can have at most 2p literals. We will use the symbol wj to denote a literal. The literal is said

to be in its normal form if wj=zi and in its inverted form if wj='zi. A product term is a B-ternary

function that is obtained by successively performing the A operation on its literals. For example, if

101

wwj1 ,i2,... , w1 are r literals, then the corresponding product term is w1 1Awi2A ... Aw 2. Since the

A operation on L is both associative and commutative, the order of the literals does not matter and

hence the product term is well-defned. Thus any p-variable B-ternary function f consisting of q

literals wI 1 . ,Wq where q 4 2p can be expressed as

f = 1Vg2V . \/9- (4.4)
where ."-is a product term of a subset of the q literals, for each j= 1,2, . . . This result follows

directly from the corresponding well-known result that any switching function can be expressed in a

* sum of products form and can be found in any standard text book on switching theory, such as [541.

* since the relevant laws of conventional two-valued Boolean algebra used in its proof are easily

extended to the ternary case. We will use the term sum as analogous to the V operation and product as

analogous to the A operation. Thus the result in the above Equation (4.4) can be simply stated as any

* B-ternai-v function can be expressed as a sum of products of its literals. Similarly it can also be shown

that any B-ternary function f can also be expressed as a product of sums of its literals 1541. ie.,

f hjAhA.Ah" (4.5)
where each hiis a sum of a subset of literals.

We now introduce the notion of zero-delay through a block in a network. By this we mean that

*there are no delay elements present in the block and that at any instant of time the ternary value of

the output signal can be determined from those at its input signals at the same instant of time. We say

that an MFB with p-inputs zI,.. ,zrealizes a p-variable ternary function f if the ternary output

signal z,, can be expressed as z,, =f(ZiZ2 ,.. ,z)while the MFB is assumed to operate in the zero-

delay mode.

The zero-delay value of z, of an MPHB of p driver transistors m1,m2, . can be computed as

follows. Let zi be the value of the signal at the gate node of i. Let Hf be the D-block in the graph

representing the network corresponding to the NWFB. Each edge of Hf has a conduccion state associated

with it which is equal to the ternary value of the gate signal of the corresponding driver transistor.

r.7

" •. .-..

102

The state of a path P in the graph is defineo ds the product term of the states of the edges in the path.

If there is a path between the output vertex and the ground vertex with state 1, then, clearly the signal

at the output node will be forced to have the value of the ground signal (which is stronger) which is a

0, i.e., z, 0 in this case. If all paths between the output and the ground vertices have state 0 then

z,0 = 1. If there are no paths with state 1 and at least one path with state u then. in this case, z, u.

Let P1 P,..., P, denote all the paths between the output vertex and ground vertex in the IFB and

let gi denote the state of path Pi for each i 1,2, ... , s. Clearly, each gi is a product term of the ter-

nary signals at the gate nodes of the transistors corresponding to the edges in path Pi. From the above

simple arguments it is clear that the ternary value of the output signal can be obtained by summing all -

the gj's and inverting the resulting sum, i.e.,

Z.= -glVg2\/... Vg). (4.6)

Thus z. is a p-variable B-ternary function of its arguments z1 ,z2 ,... , z , which are the signals at the

input nodes to the MFB. It must be noted that in each product term gi above, no literal appears in its

inverted form, ie, all literals appear in their normal form. Such a product term will be referred to as

a normal product term. We now present some interesting results in the synthesis of networks composed

of MFB's to realize any combinatorial switching function.

Theorem 4.2 Any p-variable B-ternary function f(z1 ,z2 ... , z) that can be expressed as the inver-

sion of a sum of normal product terms, as in Equation (4.6), can be realized by a single MFB with p

input nodes.

Proof We begin constructing an MFB with a supply node (connected to a power supply VDD), a

ground node, and p input nodes n 3n2, ... Lp such that the ternary signal at ni is zi for each

i=1,2, ... , We then include a depletion transistor with drain node connected to the supply and

source and gate nodes tied together at a node no which we will call the output node of the MFB. We

now introduce the notion of a series chain of transistors which will be made use of in the construction

of the driver block of the MFB.

. . . . , - . .. , .. , ., . ,.- .-. : .- - ,. , --. -, .. .° .. , * '. - . . - ' . .

............. -+ ., - . ..-,, A-:2)i ,- l m + ...

I . .

103

A set of 8 transistors is said to form a 8 series chain if the subgraph induced by the edges

corresponding to these transistors in the graph representing the network is a path of length 8. The

nodes corresponding to the end vertices of the path will be called the end nodes of the chain. An

example of a 4 series chain is shown in Figure 4.2.

Let the B-ternary function be expressed in the required form as

f --4g 1V 2 V ... V&)

where gj is a product term of 8j normal literals for each j= 1,2,..., a. Corresponding to each gj we

• -insert a 8i series chain of enhancement transistors with one end node as no and the other as the ground

node. Each transistor in a series chain is associated with a normal literal appearing in the corresponding

product term. The gate node of a transistor corresponding to a literal zi is connected to the input node

-i. We thus have s series chains of enhancement transistors connected in parallel across the output node

n, and the ground node. It can easily be verified that such a configuration would correspond to a D-

block in a graph representing the network and hence the subnetwork we have constructed constitutes

an MPH. Furthermore this MFB would realize the required B-ternary function. 0

The simplest proper MFB is an inverter consisting of exactly one driver transistor as shown in

Figure 4.3(a). Even simpler than this is an MFB with no driver transistors, in which case, the ternary

signal at the output is always at 1 (which incidentally is a B-ternary function by definition). Figures

4.3(b) and (c) show two-input NAND and NOR gates respectively. As an illustration of the technique

•. used in the proof of the above theorem we consider the five-variable B-ternary function given in Equa-

tion (4.3). An MFB with ten driver transistors realizing this function is shown in Figure 4.4. This con-

sists of four series-chains connected in parallel across the output of the MFB and the ground node con-

sisting of two, two, three, and three driver transistors respectively. One measure of the complexity of

an MPH could be chosen as the number of driver transistors in the NT& It must be noted that

Theorem 4.2 does not say anything about the uniqueness of the MFB realization. In fact there could be

several MFB's realizing the same B-ternary function. Figure 4.5 shows another MFB realizing the same

D.1

104

r

Hk

Figure 4.2 A 4 wenes chain of transistors

i:]W. 7, Wo

105

-.- V0
.Vol)" p_.. vo')

a) n n

ni.H

""1 r--.e-_

V 0

nio

b) nH n- n"

V00

no

(b): A two-input NAND gate
(c) : A two-input NOR gate

. ,_ , ,. , .-5*...,.- ..: :. S :- : *: ... _ : .: _ : ., :

106

OWf

ZJH Z2

zi ~ Z20i

P-8523

Figure 4.4: An MTFB realization of f in equation (4.3)

=.* -- r

107

B-ternary function as in Equation (4.3). This MFB, in fact, has only five driver transistors and is an

example of using bridged configurations to reduce the number of transistors in a series-parallel realiza-

tion.

The B-ternary functions considered by Theorem 4.2 are of a rather restricted nature. If we relax

the requirement that only a single MFB be used in the realization, we can consider a subnetwork of

MFB's realizing any general B-ternary function. The number of levels in a subnetwork composed of

blocks can be defined as the length of the longest directed path in the corresponding subdigraph within

- .the digraph derived from the partitioned network. The following result shows that any B-ternary

function can be realized by a two-level subnetwork of MFB's.

Theorem 4.3: Let f(z,z 2 ,..., z) be any p-variable B-ternary function. Then f can be realized by a

at most two-level subnetwork consisting of 13+I MB's with of these MFB's being simple inverters.

where p p.

Proof : Let f hnAh2A... /hs be the product of sums expression of the B-ternary function f.

Since - W-f)) f we can rewrite the function as

f = "4g1Vg2\/ ... \/g)

where gj= -,(hi) can be easily shown to be a product term for each j=1,2,... ,3, through simple ter-

nary algebraic manipulations. The rest of the proof is very similar to that of Theorem 4.2 in that an

MFB is constructed with a series chain for each product term and the number of transistors in a series

chain equal to the number of literals (both normal and inverted) in the corresponding product term. If

all literals appearing in the product terms are in their normal form, then from Theorem 4.2, a one-level

realization can be obtained. If a literal -'zi appears in a product term gi in its inverted form. the gate

node of the corresponding transistor in the series chain is connected to the output of an inverter whose

input is connected to node ni. Clearly, the number of inverters needed is equal to the number of

literals appearing in their inverted form in a product term which is at most p. It can be easily verified

that the output of the MFB apart from the inverters in the subnetwork is the required B-ternary

108

V00

f

jZ2

Figure 4-5 Another NMFB realization of f in Equation (4.3)

109

function of the signals at the input nodes of the subnetwork. Furthermore, this is a two-level subnet-

work. C]

As an illustration consider the following three-variable B-ternary function

f, = (zAz2)\/I(-'zl\/z 2)Az3)

which can be expressed in its products of sum form as

fl= (ZV-'z 1 \/Z 2)A(zIV-'z1 Vz 3)A(-'z\/z 2)A(z 2 Vz 3)A(zVZ 3)A(-zIVz 2 \/z 3)A(z 1 \/z2Vz 3)-

Using simple algebraic manipulations this reduces to

- , "~-41 lAzI A-z2)P\/(-zlz, ! A-'z3)V(zlA-z 2)\/(-z 2 A 'z 3)\/("'z1 A-z 3)\/(zl A-'z 2A'z 3)\/(-z, A-z 2A-z 3)),

" .which is in the required form as an inverse of a sum of product terms. We then have a series chain for

each product term above. In the first series chain, the gate of the first transistor is connected to the out-

put of an inverter whose input is connected to node n1 , the gate of the second transistor is connected

- directly to -node nj, while the gate of the third is connected to the output of another inverter with

input node n2 . This is repeated for each of the remaining series chains. The complete realization

involving an MFB with 18 driver transistors and three other inverters is shown in Figure 4.6(a). A

much simpler realization with an MFB containing only six driver transistors and three inverters is

shown in Figure 4.6(b). Thus, Theorem 4.3 only guarantees the existence of an MFB that realizes a B-

ternary function, and its proof describes a technique to construct one such realization using series chains

of transistors connected in parallel across the output node and ground. However, it may be possible to

construct another MFB to realize the same B-ternary function using a different design philosophy and

may turn out to be even simpler than the first realization. Therefore, MFB's play a very important role

in NMOS designs since any combinatorial switching function, which is a restriction of a B-ternary

function to the two-valued Boolean algebra, can be realized by a at most two-level subnetwork com-

posed of only MFB's according to Theorem 4.3. In practical designs, however, the designer may want

to realize several combinatorial switching functions in the same subnetwork which might require more

...- . --. .-................................ ----- "----.'. .-.. .- -

V00 110

fi

rofi

[Fri

I X I I IIPI I 1

Fiur 4.() Atolve'F raia3o ff

(b) A ige1EZeaiaio2ff

..

levels. Furthermore, the use of pass transistors in realizing combinatorial logic [56) sometimes yields

*-. NMOS designs with better performance.

*.! We will now describe the algorithm to simulate an MFB with no internal feedback. The algo-

rithm begins by first assumming that the MFB is in a zero-delay mode and computes a sequence of tran-

sitions called the zero-delay sequence at its output node. Each transition in the zero-delay sequence is

then delayed by a delay operator followed by a filtering process that produces a chronological and com-

patible delayed sequence. In this section we will focus our attention only on obtaining the zero-delay

sequence at the output node of the MFB given the sequences of transitions at its input nodes. The delay

*and filtering operations will be discussed in Chapter 5.

Consider an MFB with a set of driver transistors Mf=(m 1 ,m 2,. .. ,m.), a set of input nodes

INPf.=n 11n 2, ..., na and an output node n, where nj=GATE(m i) for each i=1,2,..., p. Let Si be

the sequence of transitions at node ni with transition times between integers K, and K,. In the case of

MFB's in simple SCC's we can assume K1 =O and K 2 =K, i.e., the input sequences are known for the

entire time interval. In other situations the values of K, and K2 would be decided by an algorithm to

process blocks in a general SCC to be discussed in Chapter 6. Let Hf be the D-block corresponding to

* " the MFB in the graph representing the network. Each edge ei corresponding to transistor m i is associ-

ated with an edge sequence S(ei) which is initially set to Si. Two edges in a graph are said to be paral-

lel if they have the same end vertices. A simple graph is a graph with no self loops and no parallel

edges. The simplification of a graph is a graph obtained by collapsing all parallel edges into a single

edge whose edge sequence is the sum (\/) of the sequences of the parallel edges. We define the elimina-

tion of a vertex v from a simple graph as a procedure involving the following two steps:

(1) For every pair of vertices a and b adjacent to v in the graph, add an edge between a and b with

the edge sequence of this new edge being the product (A) of the sequences corresponding to the

edges <va> and <v,b>, respectively.

. .- ~. .

.- ~ 7 T ~ ~ °- -"

112

(2) Delete the vertex v (and all edges incident on it) from the new graph obtained in step (1).

It must be noted that eliminating a vertex from a simple graph could create parallel edges in the

new graph. If we treat the graph Hf as a two-terminal network of switches between the output vertex

and the ground vertex, we can define a transmission function T that denotes the state of "conduction"

between the output and ground vertices as follows:

a) Each edge of the graph represents a switch whose state at any instant of time could be open,

intermediate, or closed, denoted by symbols 0, u, or 1, respectively. Thus the edge sequence

represents the variation of the state of the switch with time and can be defined to be the transmis-

sion function through the edge.

b) The transmission function through a path is defined to be the product (A) of the transmission

functions through the edges in the path.

c) The transmission function T between the output vertex and ground is the sum (V) over all possi-

ble paths between the two vertices of the transmission function through each path.

Clearly, T is a sequence of transitions and So=--T.

Theorem 4.4: The operations of simplification of a graph and internal vertex elimination in a simple

graph do not alter the transmission function between the output vertex and the ground vertex in the

graph.

Proof: Let us consider a set of parallel edges E- e(,e2..... eq} between vertices a and b in a graph

H. Let us partition the set of all paths I between the output vertex and the ground vertex in H into

two sets, namely, IH and If, where 1l is the set of all paths containing an edge eiEE and IH' is the set not

containing any eEE. Let HI be the graph obtained from H by replacing the set E by a single edge e"

between a and b, with S(e')=S(e)\/S(e2)\/ ... \/S(eq). If H1 , denotes all paths between the output

vertex and the ground vertex in HI containing e', then, clearly the set of all paths HI between output

and ground vertices in H1 is H-- =II U H. Let T1P) denote the transmission function through a path P 7

and let V(H) denote the sum of transmission functions through each path in the set H. The

..
.. , . ., _ ., ...- ...-. ..-.-.;: : , ...k

113

transmision function between output vertex and ground vertex in H is clearly

-- T=T(fi)VTtnf)

* while that in HI is T(IIA)\/T(I'). Let P be some path in U1 , and F-P--e Clearly, F is either a path or

a union of two disjoint paths. In either case let T(F) denote the product of the transmission functions

. through the edges in F. It is also easy to see that Pi-F+ei is a path in 1I for each i=1,2, . q and

T(P)=T(F)AS(e*)=T(PI)VT(P 2)V • VT(Pq).

Therefore, T(fl)=T(f1), and so the transmission function between the output vertex and ground vertex

in H is the same as that in H1. We can repeat the same argument for a set of parallel edges in H1 and so

on until we end up with a simple graph. Hence, the transmission function between two vertices in a

graph does not change on simplification of the graph.

Now let us consider a simple graph H and an internal vertex v in the graph. Let II, be the set of

paths from the output vertex to the ground vertex containing the vertex r and let 1' be the ones

without v. If U denotes the set of all paths between the output and ground vertices in H, then clearly

the transmision function T=T(U)=T(U1,)VTU'). Suppose the degree of v in H is q and let

Adj(v)=1w,wz, ... , Wq}. Since H is simple, all vertices adjacent to v must be distinct. Let ei denote

- the edge joining v and w i in H. Let HI denote the graph obtained from H by eliminating v. Let the

new edge that joins w i and wj in HI be denoted by ei. By definition S(ei)=S(e)AS(ej). Let

Eq=leij: ij=1,2, ... ,q ,idj1. Let 1 , denote the set of all paths between the output vertex and

* ground in HI. If II denotes the set of paths between the output vertex and ground vertex in HI that

S.- contains edges from Eq, then clearly UI1 1 U U'. We can divide the set 1] into two disjoint subsets, IlI

* containing only one edge from Eq and Ui2 containing more than one edge from Eq. It can be easily

*:: . verified that given any path P2 E 12 there exists a path PIE III such that the terms in T(P 2) are sub-

.ured by the terms of T(P), i.e., T(P1)VT(P2)=T(P1). Therefore, T(l)=T(fl 1). Given a path PEH,

such that wi and wj are the vertices adjacent to v on this path, we can construct a path P, such that

PI=P-v+ei. Clearly, PEII and T(P)='TPI). Thus there is a 1-1 correspondence between paths in

..t....... . o o- .°. ... " -......... °

114

I,, and 1l and TI)=T(UI). Therefore,

and hence the theorem is proved. C

The algorithm to obtain the zero-delay sequence of transitions at the output node of a MFB begins

with the simplification of the D-block corresponding to the MFB. It then picks an internal vertex in

this simple graph and eliminates it and then simplifies the resultant graph. This process of elimination

followed by simplification is repeated for each internal vertex. The end result would be a simple graph

on two vertices, namely, the output vertex and the ground vertex. If the MFB is proper, then its D-

block is a connected graph containing the ground node, and so the graph resulting from the elimination

of all internal vertices followed by successive simplification would have an edge between the output

and ground vertices. From Theorem 4.4, the transmission function between the output and ground ver-

tices is the sequence associated with this single edge, and S. would be the inverse of this sequence. Once

*. the zero-delay sequence is obtained the transition times are delayed by a delay operator and the whole

' sequence is filtered using techniques to be discussed in Chapter 5.

Algorithm 4.2

Input : An NlFB 11f, a set Mf of driver transistors,
a sequence of transitions Si at the gate node of each
mi E Mf, the D-block of the MFB Hf(VfEf)
with all vertices in Vf apart from the output vertex and the
ground vertex marked as "internal".
K, and K2 are the end points of an interval during
which simulation is to be performed.

* Output: A sequence S, of transitions at the output node n' of the MFB.

procedure MFB SIM (flfK 1,K 2)
begin

for each edge ej E Ef do
S(ei)--W-M]DOW (Si,K 1,K2);

Ho.-SEMPLIFY (Hf);

while there exists a vertex v in H i marked "internal" do
begin

.. -*..J
- -- - - - "" " - - ".-. : .: .-- .- -:- .':'':':-:% :, .,- .:-:;-% - ''-:- .-

- -= r r r r .-' - -'-o

115

H-ELIMINATE (v,Hi;
Hj+, ,-SUMPLFY(H),

endif there exists an edge in Hi then

e,- edge in Hi

DELAYFILTER (S, Ll)f
else

append (u,1,-1) to S;
end if

end

procedure ELIMINATE (vH)
begin

* 11.-H
for each pair of vertices wi,w j 4E AdjH(v) do

begin
- .. ei,,- < v,,wi >;
- - - ej- <vwj>;

add a new edge el. in H joining wi and w.S(ej)-S(ej)AS~ej .

end
return H-v,

end
In the above algorithm, the choice of v as an internal vertex picked for elimination from Hi is

important from the complexity point of view. If the degree of v in Hj is q, then the total number of

* edges added as a result of eliminating v from Hj is q(q-1)/2-q. which is equal to q(q-3)/2. Note

that q>2 if v is to be on a path in H. If q=f2 then the new graph has one edge less than the number

in Hi while the number of edges is unchanged if q=3. Hence a vertex of lowest degree in Hj is picked

as the best candidate for elimination. The procedure WINDOW returns a sequence of those transitions

occurring between K, and K, in its input sequence.

At this stage, we would like to point out that the procedures used in Algorithm 4.2 can be used to

compute the transmission function between any two nodes in a two-terminal switching network pro-

vided the states at the internal nodes in such a network are not required for simulating other blocks in

the network. In the case of an MFB, by definition, such a switching network exists, naturally, between

the pullup node of the MFB and the ground node. Now let us consider a PTB which is viewed as a net-

. :. -.------....

116

work of switches between the drain and source nodes of its pass transistors. A general PTB would

clearly result in a multiport switching network. Once again, in general. one would be required to com-

pute the states at several nodes within such a network since these could be external nodes according to

our definitions in Chapter 3. Furthermore, the delay characteristics of PIB's are different from those of

MFB's as will be seen in Chapter 5. Hence we choose to differentiate between MFB's and PTBs and we

simulate them using different techniques.

4.2.3 Simulation of a PTB

Let n)t be a PTB with a set of pass transistors M- Let

NDS,=IDRAN(mi),SOURCE(m i) mi EMt be the set of drain and source nodes of the pass transistors

in the PTB and let NGt=IGA TE(mi): miEMt} be the set of gate nodes. Consider the set 0 of transi- %

tion times of the signals at the gate nodes arranged in an ascending order. These time points divide the

time interval of simulation into several phases such that during each phase Oj=(kjkj+) the signal at

each gate node in NG, is at a fixed ternary value, i.e, a 0, u, c, 1. The time ki is the initial time and the

time kj+1 is the final time of phase O. Let sij denote the fixed ternary state of the signal at gate node

ni E NG, during phase j. We partition the set NDSI of drain and source nodes of pass transistors in the

PTB into three subsets:

1. Nj=In) ENDS : NODTYP(n))=input"}, the set of nodes of input strength.

2. Np=ln) ENDS, : NODTYP(nx)=pullup, the set of nodes of pullup strength, and

3. N,={nxENDSt: NODTYP(n)=Dnormal}, the set of nodes of normal strength.

We are given the sequences of transitions at each node in N i and NP in the PTB. Our task is to

compute the sequences of transitions at the nodes in Nn. We do this in phases. Initially all the node

sequences for N. are set to the null sequence. We then simulate the PTB in the first phase jI followed

by the next phase and so on, updating the node sequences for the normal nodes in each phase. The

%,=°'

117

simulation of a phase j begins by constructing an undirected graph H, with vertex set VT-NDS,

corresponding to the drain and source nodes of the pass transistors and the edge set F initially empty.

For each pass transistor m i EMS, an edge is inserted between DRAIN(mi) and SOURCE(m i) if si j1,

i.e., if the signal at the gate node of the transistor is at a I during #. Each connected component of the

graph represents a switching network with nodes connected by two terminal switches that are in the

* closed state. Consider a component Cr of the graph. Let STGr denote the subset of the strongest nodes

(vertices) in C., where the node strengths are ordered as input > pullup > normaL The strength of

the component Cr is then defined to be the strength of its strongest node(s). If JSTGrJ>I and the

strength of C, is either input or pullup, then a conflict is declared at each normal node in the corn-

ponent. In case a node is experiencing a conflict in the present phase Oj, there could be two possibilities,

namely, the node was in a conflict in the previous phase jb-, or it was not. In the former case the

duration of the present phase is added to the existing value of the duration of the conflict. In the latter

case the conflict is said to have started in the present phase and its duration is set to the duration of the

phase.

If the strength of Cr is normal, then charge sharing is said to take place among the normal nodes

in the component. Given any sequence of transitions, one can define the initial value of the signal to be

- . the ternary value before the occurrence of the first transition and the final value to be the one after the

last transition. For each node nE Cr let S(n,) denote the existing sequence of transitions at the node

and s, denote the final value of this sequence. We define an equivalent voltage v, corresponding to the

" ternary signal s, as v,=O.O, G*VD, or VDD depending on whether s,=O, u, or 1, respectively, where

S<a< 1 is an empirical parameter. The default value for a is 0.5. The charge on a node n, is defined

to be the product v,*CAP(n,), where CAP(n,) is a lumped capacitance from node n, to ground. In the

S."-case of charge sharing among the nodes of a component of normal strength, the total charge in the com-

ponent is computed by summing up the charges on each node in the component and this quantity is

divided by the total capacitance to yield a final voltage

-" •".........-.........................•*.- :. .-..-.. '....

* n .IN EIU ua~ *UW*~Eu~UuU- -

118

AA, Cr

. nE C. .

The final ternary value sa reached by all the nodes in the component after charge sharing is then corn-

puted from vf as sa =0, u, or 1 depending on whether Vf VL, VL<Vf<VH, or VH(vf, respectively,

where VL and VH are the low and high thresholds as defined in Chapter 3. For each node n1 , if ssf

then no further analysis is required. Otherwise, if either s, or sf is a u, then the transition (s.,af,kj+1)

is appended to the sequence S(n,). If sEO,11 and sf=-s., then the pair of transitions

(s.,ukj), (uakj+1) is appended to the node sequence S(n,). The transition times are then suitably

delayed and the sequence is filtered appropriately.

If ISTGrI=1 and the strength of the component is either input or pullup then the component is

simulated as follows. Let n, be the unique strongest node in the component. Let S, be the sequence of

transitions at the strongest node occurring within the phase, ie., taking place between kj and kj+,.

* Consider a normal node n, in this component. If the node was experiencing a conflict in the previous

phase then the conflict is declared as resolved in the present phase. Suppose a conflict that existed

between times ki and kj for some i <j at n, has now been resolved in the present phase. If the dura-

tion of the conflict kj-ki is more than a preselected parameter e, known as a conflict parameter, then

* the conflict at n, is declared as a major conflict, otherwise, it is a minor conflict. In case of a major

conflict, a transition from the state of the node n, just before ki to the u state is created at time ki fol-

• lowed by a transition from u to the initial value of S, at time kj. Thus, in a major conflict, a node is

* forced to occupy the u state for the entire duration of the conflict. Minor conflicts are totally ignored.

Once all conflicts (if any) are resolved, we again consider each normal node n, in the component. If the

initial value of S, is different from the final value of the existing sequence Sn,), then the appropriate

. transitions to the iritial value of S, are appended to the node sequence S(n,) followed by appending the

. sequence S, itself. Each of the transitions appended is then suitably delayed and filtered.

. . *.. . -

-7i

119

Thus far, we have only considered transistors which are in the closed state during a phase qbj. A

pass transistor is said to have a state u* if its gate node is at the u state in the present phase but occupies

a 1 in the next phase. A transistor in the u' state in the present phase is in an intermediate cnnduct-

ing state but would occupy a closed state during the next phase. This interpretation is radically quite

different from the interpretation of the presence of the X state at the gate node of a transistor in con-

ventional switch-level simulators such as MOSSIM [191 The second part of the simulation of the PTB

within a phase begins by constructing a supergraph with a vertex for each component Cr of H, and an

edge between two vertices Cr and C, if a transistor in the u* state has its drain node in Cr and source

node in C, or vice versa. The transistors whose gate signals are in the 0 state or in a u but not in a u,

state are ignored during the present phase. The connected components of the supergraph partition the

components of H, into supercomponents, such that each supercomponent consists of a set of components

linked by pass transistors in the u" state.

If a supercomponent consists of only one component, then no further analysis is required for this

phase. Otherwise, the strength of the supercomponent is computed as the strength of the strongest com-

ponent. If the strength of a supercomponent is input or pullup and it contains more than one strongest

component, then this would lead to a conflict in the next phase and the simulation is postponed until

the next phase. If the strength of a supercomponent is normal then this would clearly lead to charge-

- sharing in the next phase and, once again, the simulation is postponed until the next phase. The only

situation left to consider is when the strength of a supercomponent is input or pullup and it has only

one strongest component. Suppose the strongest component has only one strongest node whose final

value in the present phase is sf. Then for each node in each normal component, the transitions from the

final value of its node sequence to sf are appended to the node sequence. The transitions are delayed

only if the node is not in a conflict during the present phase. If the strongest component has more than

one strongest component then, once again, the simulation is postponed until the next phase.

° ,.

' ~..-. s d -- i m m..a,. . . .t.- l I

120

The algorithm, described above, for the simulation of a PTB is somewhat heuristic, and instead of

presenting a formal description, we will illustrate several of its features through an example. Consider

a PTB shown in Figure 4.7, consisting of six pass transistors. We would like to simulate the PTB

between 0.0 and 80.0 ns with a minimum resolvable time hm.-" 0.01 ns. Thus transition times will be

represented by integer multiples of 0.01 ns. Let us suppose that we will ignore any conflict lasting less

than 0.1 ns, i.e., we choose the conflict parameter 4=10. For purposes of illustration we use an arrow

head at a node to indicate in'ut strength and a triangle to indicate pullup strength. Thus nodes no, ns.

and N, are of input strength while nodes ni, n2, n3, and n4 are of pullup strength. The nodes n? and

n8 are normal nodes in the circuit. The set of gate nodes for the pass transistors is NG-n 1 ,nI2,n 3 . Let

us assume the sequences of transitions at these nodes, which have already been computed, to be

S1 =(0,u,4025), (u,0,4060), (0,u,6025), (u,1,6070)

$2=(1,u,2015), (u,0,2025)

S3=(0,u,2025), (u,1,2060), (1,u,6075), (u,0,6100)

respectively. The signal at the ground node no is at 0 for all time and that at the supply node r, is at a

I always. Node ns is driven by a pulsed voltage source with a sequence of transitions

Ss = (O,u,iOO), (u,l1005), (1,u,2014), (u,0,2018), (0,u,3002), (u,1,3006), (l,u,4013), (u,0,4017),

(0,u,5002), (u,1,5006), (1,u,6014), (u,0,6018), (0,u,7002) , (u,1,7006)

and the node n 4, which is the output of an inverter with n 3 as input, has a zero-delay sequence

S4=-Ss. The transition times of the gate sequences SI, S2, and S3, arranged in order gives us the set

0 = { 2015,2025,2060,4025,4060,6025,6070,6075,6 1001

which has nine elements and hence results in ten phases. The first phase is #,=(0,2015), the second is

S62=(2015,2025), and so on, until the last phase which is io- We recall that sij is the fixed ternary

state occupied by the gate node ni during phase €r We will represent these in a 3X 10 matrix

........................ ~

"'" ", ._2 .,..."."."". .".". ..'. .'"".".' " '"" """ "")_ :, .., . ..-.-.- .,, ,,.':. .•---,..-

121

n~n6

n7n3

n43

n

FP-8522

Figure 4.7: An example of a T

122

0 00 0Ou 0U*Il1l
A= Iu 0 0 0 0 0 0 0 0 (4.7)

0 0 u I 1 1 1 1 u 0

For example, from the thL-d column of the above matrix we see that nodes n and n2 are in the 0 state

during the third phase and node n 3 is in the u" state. The second row of the matrix says that node n 2 is

in the 1 state during 01, in the u state during S2 and 0 from then on until the end. The simulation in

each phase will consist of two parts. In the first part we will contruct a graph on six vertices, namely,

n0 , n4 , ns, n6 , n7, and na, with edges corresponding to transistors whose gate signals are in the 1 state.

The second part will deal with a supergraph whose vertices are components of the first graph and edges

corresponding to transistors with gate signals in the uO state.

Phase 1, (0,2015)

From the first column of the matrix A in Equation (4.7) we see that in this phase only node n2 is

in the 1 state. The graph is shown in Figure 4.8(a) and has four components. Components CI and C4

have only one node each and therefore no analysis is necessary. The strength of C2 is input and it con-

tains only one input node no. The node no is always in the 0 state, i.e, its corresponding sequence is

(u,O,-1). The the normal node n- in this component will have this transition appended to its existing

sequence, which is the null sequence initially. The strength of the component C2 is also input and it

also contains only one strongest node, namely, ns . The sequence of transitions in SS occurring within

S6 is (Ou,1001), (u,1,1005). This will be the zero-delay sequence to be appended to the sequence at

the normal node ng in this component. Thus on delaying and filtering the sequences at the normal

nodes we get

S.7 =(U,,-lD

Ss= (0,u, 1022), (u,1,1188).

Since there are no transistors in the u" state in this phase, the second part of the phase simulation can be

bypassed.

. . ..

C~tO 123

@ C4
\C

/ C\
QC4 / SC,N/ -o

(Ijjjz C3 A n, I

CC.

(cl (d)

C, C?

fig nif,

fio OC%~
QC4

(.1 Ino

Figure 4.8 Graphs and supergraphs for different phases in the PTB example

124

Phase 2, (2015,2025)

There are no transistors in this phase with gate signals either in the 1 or in the u" state, and hence

the entire phase simulation can be bypassed. There is no change in the sequences S7 and S8 given above.

Phase 3, (2025,2060)

There are no transistors with gate signals in the 1 state in this phase. The graph therefore will

have no edges and hence the first part of the simulation in this phase can be bypassed. The signal at

node n3, however, is in the u" state, thus resulting in a supergraph with six vertices and two edges as

shown in Figure 4.8(b). Two of the supercomponents SCI and SC3 contain only one component each

and therefore need not be analyzed any further. The supercomponent SC2 has C6 as its only strongest 7

component, and the final value of node n5 , which is the only node in C6 , in this phase is 0. Since this

agrees with the final value of the existing sequence at node n, which also happens to be the only nor-

mal node in C2, we conclude that there is no change in sequence S, in this phase. The supercomponent - - -

SC 4 is of strength pullup consisting of a pullup component C4 and a normal component Cs. The com-

ponent C4 consists of only one pullup node n4 , the final value of whose sequence in this phase is a 1.

Once again this agrees with the final value of the existing sequence at node n 8, which is the only nor-

mal node in CS, and hence there in no change to either S7 or S, in this phase.

Phases 4, 5, and 6, (2060,6025)

From time 2060 up to 6025, node n3 is fixed at the I state and node n2 is fixed at 0. Node n,

however, is at 0 during 564=(2060,4025), occupies the u state temporarily during 05=(4025,4060), and

comes back to the 0 state during Sb=(4060,6025). The graph during these three phases is shown in

Figure 4.8(c). It consists of four components. Two of these components, C and C2 , contain only one

vertex each and need not be analyzed any further. In C3 , node n, is connected to ns. Let S denote the

sequence of transitions in 5 occurring between 2060 and 6025, i.e.,

S = (0,u,3002), (u,1,3006), (I,u,4013), (u,0,4017), (0,u,.5002), (u,I,5006), (I,u,6014), (u,0,6018).

............... .- .

K

125

Since the initial value of S agrees with the final value of the existing S,, we simply append S to S. In

C4, node ns is connected to the node n4. The sequence of transitions in S 4 occurring during these phases

is clearly -S. Once again, since the initial value of --S, which is 1, agrees with the final value of the

existing S , we simply append - to S8. On delaying the transitions that were just appended we get

S. = (Ou,3023), (u,1,3189), (1,u,4032), (u,0,4076), (0u,5023) , (u,1,5189), (1,u,6032), (u,0,6076)

S = (Ou,1022), (u.1,1188), (1,u,3065), (u,0,3237), (Ou,4174), (u,1,4657), (1,u,5065), (u,0,5237),
(Ou,6175), (u,1,6658).

It must be noted that the last pair of transitions in Sg takes place well after 4
% and could be deleted by

the filtering operator during simulation in . Furthermore, the second part of the simulation can be

bypassed.

Phase 7, (6025,6070)

The graph during this phase is the same as the one in Figure 4.8(c) and there is no change in either

S, or S after the first part of simulation in this phase. The supergraph constructed in the second part

of the simulation is shown in Figure 4.8(d). The supercomponent SC 2 consists of only one component

*C, and hence need not be analyzed any further. The supercomponent SC1 , however, consists of three

components, namely, C1, C3, and C4. C, and C3 are of input strength while C4 is of pullup strength.

Since the transistors linking the components in this phase would be closed in the next phase, a possibil-

* .- ity of the three components merging into one during the next phase exists. The new component would

*then have two strongest nodes, thereby leading to a conflict. Hence, we do not make any changes in

either S or S even after the second part in this phase.

Phase 8, (6070,6075)

In this phase both nj and n 3 are in the 1 state, thus resulting in the graph shown in Figure 4.8(e).

The component C, has two strongest nodes, namely, n6 and ns . Therefore a conflict is declared at the

normal nodes n7 and n s . The duration of the conflict at both these nodes is 6075-6070=5, or 0.05 ns

in real time. Note that this situation was anticipated in the second part of the simulation of 4,. The

126

component C, has a single node and hence need not be analyzed any further. Since there are no gate

nodes in the u" state during this phase, the second part can be bypassed.

Phase 9, (6075,6100)

The graph constructed in the first part of the simulation in this phase is shown in Figure 4.8(f). It

consists of four components, two of which, namely, C1 and C2, have only one node each. The com-

ponent C3 consists of a normal node n connected to an input node N6. The component C4 has normal

node ns connected to the input node ns. Since both n7 and ns were involved in a conflict situation in

the previous phase, this conflict is now resolved. The total duration of the conflict in either node was 5

in integer time, which is less than e=10, and hence the conflict is declared as a minor conflict and is

ignored. The final value of S7 is a 0 while the state of the node n6 is a I since it is the supply node.

Hence we append the pair (Ou,6075), (u,1,6076) to S7, which on delaying would result in

S. = (0,u,3023), (u,1,3189), (lu,4032), (u,0,4076), (0,u,5023), (u,1,5189), (lu,6032), (u,0,6075),
(0,u,6106), (u,1,6273).

The initial state of the node ns in this phase is a 0. The final value of S8 can be seen to be a 1.

However, the last pair of transitions (0,u,6175), (u,1,6658) takes place well after the present phase.

Hence this pair is deleted from S8 and now the final value of S is a 0 which agrees with the initial

state of the strongest node, Its, in its component. This is an example of the filtering operation to be dis-

cussed in Chapter 5. Since S5 has no transitions occurring in this phase, we are done with the first part

of the simulation in this phase. The second part is bypassed. Thus the sequence at node n8 after this

phase turns out to be

S = (0,u,1022), (u,1,1188), (1,u,3065), (u,0,3237), (0,u,4174), (u,1,4657), (1,u,5065), (u,0,5237).

Note that we have deleted the last pair of transitions from the previous sequence S3 .

Phase 10, (6100,8000)

In this phase the graph remains the same as in the previous phase. The sequence S, does not

change since n, is still connected to the supply node n . The pair of transitions (0,u,7002) , (u,1,7006)

[- "7 _- F

127

from S5 occurring within this phase get delayed and appended to So.

Thus the final result is that the sequences at nodes n, and n8 are

"-. S- = (Ou,3023), (u,1,3189), (1,u,4032), (u,0,4076), (Ou,5023) ,(u,1,5189), (1,u,6032), (u,0,6076),
(Ou,6106) , (u,1,6273)

and

SB = (Ou,1022), (u,1,1188), (1,u,3065), (u,0,3237), (O,u,4174), (u,1,4657),(1,u,5065), (u,0,5237),(0,u,7023) , (u,1,7189).

4.3 Conclusions

We began this chapter by defining transitions between ternary states and showed how sequences

* of transitions can be used to represent ternary digital waveforms of signals. We also presented algo-

* .. rithms that perform a switch-level simulation of SRC's, MFB's, and PTB's. In the case of an SRC the

* sequence of transitions at the output node is constructed directly from the input description of its ana-

log waveform. In the case of an MFB we showed that the zero-delay state of its output node at any

instant of time is a B-ternary function of the states of its input nodes at the same time instant. Furth-

ermore, the output node of an MFB is of pullup strength and the only stronger node in the D-block of

the NIFB is the ground node. On exploiting all these properties of an MFB, we came up with a fairly

simple graph algorithm based on simplification of graphs and eliminating internal vertices in simple

graphs to compute the sequence of transitions at the output node of an MFB directly from those at the

input nodes of the MFB. For a PTB, we presented a more complex, and somewhat heuristic, approach

*utilizing the full power of conventional switch-level simulation. This approach is similar to that of

*" MOSSM (19]. except for the interpretation of the intermediate u state (or the X state as used in MOS-

SIM). We illustrated the approach with the help of a simple example.

If a block of a partitioned network appears in a simple SCC, and if the SCC's have been processed

according to the ordering presented at the end of Chapter 3. then the sequence of transitions at each

input node to the block will be known for the entire time interval of interest. In this case the block

128

can be simulated for the entire period of time by algorithms described in this chapter. Otherwise, the

blocks are simulated only over certain windows in time. The end points of these windows are specified

by a special algorithm to be described in Chapter 6. - -

.
..


~~~7 _;V.. . .. . . -. wu

129

CHAPTER 5

DELAY AND FILTERING OPERATIONS

. The algorithms described in the previous chapter compute zero-delay sequences of transitions at

the output nodes of an MFB and normal nodes of a PTB. By zero delay, we mean a transition at the

gate node of a transistor causes a transition in the switching state of the transistor immediately, and

this change affects the state of other nodes without any delay in time. In this chapter we will consider

altering the transition times so that the resulting sequence would then correspond to a ternary

* waveform that is fairly close to the ternary equivalent of the analog waveform if computed by an

accurate circuit simulator. The task of the delay operator is to alter the transition times only for a

complete pair of transitions. Each application of the delay operator is followed by a filtering operation

which accounts for the effect of delaying a complete pair of transitions on the future transitions in the

sequence. The filtering operator also transforms a partial pair of transitions into a form that can be

handled by the delay operator.

The delay operator is characterized by delay functions which are computed for a set of standard

S. circuit primitives and stored in tables. This step involves the use of an accurate circuit simulator to

simulate each primitive and could consume large amounts of computation time. The circuit primitives,

however, do not change as long as the technology remains fixed and hence the computations of the

." delay functions need be performed only once for each technology. This step, therefore, can be con-

- sidered as a preprocessing phase since the same delay tables could be used to simulate many different

networks designed in a fixed technology. The delay operator then computes new values for transition

"- times in a complete pair of transitions at a certain node in a general block in two steps. First, a map-

ping technique is used to transform the block into a configuration that resembles one of the primitives



' *-'- -
_

. . ,. ., . - .i wr .- r . -: -r , -. . - . -'- . . . . . - ° . . *

130

for which the delay functions have been computed. Time scaling is then used to transform the new

configuration into a standard primitive after which the delay values can be obtained through a table

lookup.

5.1 Computation of Delay Functions for Standard Primitives

In the case of conventional NMOS depletion load technology, we consider five basic configurations,

called primitives.

Primitive 1 A simple inverter driving a lumped grounded capacitance C1. An input signal Vi, is

applied at the gate node of the driver transistor mD and the output, V , is observed at the source node

of the load transistor mL as shown in Figure 5.1. We consider two types of input waveforms, namely,

Type "0":V. rising from 0 V to 5 V

and

Type "I": V. falling from 5 V to 0 V.

Primitive 2 A pass transistor mp whose drain is connected to a constant DC voltage source Vz. and

the gate driven by a pulse Vi rising from 0 V to 5 V. The source node of m, is connected to a

grounded capacitance C, as shown in Figure 5.2. The output waveform V, in this case is observed at

the source node of mp. We consider two types of VD0 namely,

Type "0": VD = 0 V

and

Type "I": Vc =5 V.

Primitive 3 A pass transistor mp whose gate is held fixed at 5 V and drain driven by an input pulse

Vi.. The source node, which is also the output node, has a waveform V, and is connected to a grounded

capacitance C2 as shown in Figure 5.3. We consider two types of input waveforms, namely,

Type "0" : V. rising from 0 V to 5 V

--------------------------------------------------.-- "-:-.:'-i---.i.";: ~--~----i--'------'---



m:- v.. . .0.. . . ,. R T. . - P

bS

IS

- ,p

131

Typo 0

V'00

- I

V- tI t 2  t1 t2

• . ~ ~Vin MO .... '

V Ty

I - t I t2 t 2 t

-
FP--,5I1

Figure 5.1: Primitive 1 of the delay operator

* . .



132

Type 0
"aCm OV

mnp V0

Type I
VOC 5V

ai ----~--- -.----

ti t 2  t1 t 2

Figure 5.2: Primitive 2 of the delay operator



133

Type 0

:Vin 3 ----- Vo a . .

mP Vo tl t 2  
ti t'

TType 1

1 3--

ti t 2  t! t2

F~P-8,515

Figure 5.3: Primitive 3 of the delay operator

. . . .. . . . . . . . . . . .



134

and

Type "I": V, falling from 5 V to 0 V.

Primitive 4: A simple inverter with driver transistor mD and load mL driving a pass transistor mp.

Grounded capacitors C, and C2 are connected to the pullp node of the inverter and to the source node of

the pass transistor, respectively. A pulse V, rising from 0 V to 5 V is applied at the gate of the pass

transistor mp while the gate of the driver transistor mD is connected to a fixed DC voltage source VDc

as shown in Figure 5.4. There are two types of VDO namely,

Type "O": VDc 0 V

and

Type "I*: VDc = 5 V.

Primitive 5 Same configuration as primitive 4 except that the gate of the pass transistor mp is held

fixed at 5 V while a pulse Vi. is applied at the gate of the driver transistor mD as shown in Figure 5.5.

*i Here, we consider two types of input pulses, namely,

Type "0": Vi rising from 0 V to 5 V

and

Type 1N : Vi. falling from 5 V to 0 V.

In each of the above primitives we have an input waveform Vi. which varies between VDD-5 V

and 0 V and produces an output waveform V. For a fixed input waveform, the shape of the output

V0 could depend upon several circuit, device, and process parameters. The parameters we would con-

sider are the following: zero-bias device threshold (VTO), both for enhancement and depletion devices,

a resistance for each device which is a function of the ratio of its channel length (L) to its width (W),

the transcorductance parameter, KP=j&,eo/t 0 , which in turn is a function of the carrier mobility 1L.,

the permittivity of the oxide material e,, and the thickness of the oxide t., and finally, the capaci-

tance at each node. Among these parameters we assume that all enhancement transistors have the same

zero-bias threshold, VT%1 , all depletion transistors have the same VTOD, and that these values remain

.,. ... ....-... .-... .. ... ... ... .-.. .. ._-. .... .... .- '..'. .'.. ... , -. .. .. .... .. .... .. ......- ..: .:.. -.. -.. -.. ., ... ... .. ....:.....
- , .,., ,,,,, , ,, '-.. m .,, d ,n , -, - .na .~a mu a . nu.. " l



135

Type 0

ML 0L1
,n VV-

5= --------- 5 Vx

Vin3~ji2

vi,3-- ----



136 *.-

Type 0
--- 5- --

V~00 1 3r--- -3

tL t'2

VinTp M 
"yp5

'[: .......
C~

5 "

t1  12 t, t2

PP-8517

Figure 55 Pimitve 5 of the delay operator

....... . . -



137

fixed for a given technology. Typical values are VTOE=+I.OV and VTOD=-3.OV. The rest of the

parameters are allowed to vary between the different devices and nodes in the network. In the five

primitives described above, we let RD=RES(mD), R=RES(mL), and Rp=RES(mp) denote the device

resistances of the driver, load, and pass transistors, respectively. We will choose a standard driver, a

, standard load, and a standard pass transistor, and let Rs, RLS, and Rps denote the resistances of these

" standard devices, respectively. A typical set of standard devices is

Load :W-5/j,L=10j,

Driver: W=10 i, L5 A,

Pass :W=IOjs,L=IOjA.

For the above choice of standard load and driver devices, we notice that Rs/RDs=4. We will refer to

this ratio as the standard inverter ratio and denote it by 8s.

Let Cis denote the standard capacitance in the case of the itb primitive. Typically, Cis-O.OI pF

for i=1,2,3 and Cs=O.1 pF for i=4,5. A primitive is a standard primitive if RD=RIs, RL=RLs,

CI=Cjs in primitive 1, R-=Rps, C2 =Czs(C3s) in primitives 2 and 3, and Rp=Rps, RL/RD=8,

"C,=C is(Css) n primitives 4 and 5. In primitives 4 and 5 let us define two dimensionless quantities

1=RD/Rp and y=C/C,. We use these two additional parameters to completely specify the standard

. primitive. We allow 18 and - to be variable over ranges [Pman,Pmx] and [ymm,Vym x, respectively.

Consider one of the above primitives. We treat Vi, to be an analog ramp waveform with a full

swing of VDI. This waveform will then cross both the threshold voltages VL and VH. Let tj and t 2

denote the two threshold crossing times. Clearly, this change in the input waveform would cause the

output waveform V, to cross both the thresholds also. Let t', and t'2 be the output threshold crossing

times. We define Ai.=t 2-tl as a measure of the slew rate of the input signal and two delay quantities,

At,-=t'-tl, known as the inertial delay, and At2 =t'2-t', known as the rise/fall delay. Thus, given t

. and the two delay quantities, we can easily compute t'1 -t+At and t' 2=tI+At 2. We will use the

symbol At, to refer to both the delays collectively.

Ila



138

We will now consider computing At,, for standard primitives. We first consider the standard

primitive I with rising inputs. i.e., type "0". In this case the device sizes and node capacitances are fixed

at their standard values. We consider an input ramp Vi, with a certain rise time, resulting in some

value of A,,. We then simulate this circuit using an accurate circuit simulator, such as SPICE2 [1]1

which gives us a falling waveform for V,. From both the input and the output waveforms we can

compute the thresh% Id crossing times tj, t2 , t'1 , and t'2, and hence both the delays At, and At 2. We

then repeat this for a falling input ramp. ie, type "I", with the same slew rate as before and compute

two more delay values. This experiment is then repeated with input ramps of different slew rates, each

time producing four more delay values (two in each type), which are stored in a table as functions of

A,. The entire procedure is repeated to generate the delay tables in the case of standard primitives 2

and 3. The tables in all three cases are one-dimensional since their entries are functions of only Ai,.

Each table entry contains four values, namely, At, and At 2 for type "0" and the same for type "I".

In the case of standard primitives 4 and 5, we need to specify the values of C1, RD and R, in

order to completely specify the circuit. We do this with the help of the parameters , , and 8. For

fixed values of these parameters, we get Cl=1 ,C2. RD=Rp, and RL--RD, where Rp and C2 take on the

standard values. For the present we consider the inverter ratio 8 to be a fixed parameter. We will

remove this restriction in the later sections. We start with some initial values for 19 and v. simulate the

circuit using SPICE2 [Ii, and obtain a set of delay values for each value of Aw. We repeat this pro-

cedure for different values of 18 and y and generate three-dimensional delay tables. Each entry in the

table contains four delay values as before; however, these values are now functions of three parameters,

namely, the slew rate of the input Ai,, a ratio of driver to pass transistor resistance 8, and a ratio of

capacitances -y.

We have therefore described the generation of delay tables for a fixed technology. In case of a

change in technology, the procedure has to be repeated to generate a new set of tables. It must be noted

that we consider a change in the values of the zero-bias device thresholds VTOD and VTOE as a change

.* . % . ... .

. ". " . -. ''. ' . . -' " . .' "-" . % :. -"-" . -" ," . ."". -. "",",", ." K. -- "" ."."-" ." . -. ." . *.w.".
"

".. . ." "-." -". .



139

in the process technology. However. if there is only a change in the transconductance parameter (KP)

or any of the parameters that affect its value, we can use the same set of delay tables as will be shown

in Section 5.2. The delay values are plotted as functions of input slew rate A. for primitives 1, 2, and

3 and as functions of Ain, 1 and y for primitives 4 and 5 in Appendix I for a particular technology.

5.2 Delay Functions for Nonstandard Primitives

In this section we will show how we can compute the delay values for nonstandard primitives

from the delay tables for standard primitives computed in the previous section. By nonstandard primi-

tives, we mean, primitives that have nonstandard devices and nonstandard node capacitances.

For the analysis below we choose a simple DC analog model for an NMIOS transistor by ignoring

body effect, channel length modulation, short channel effects, and other higher-order effects. Then for

any primitive i, where i=1,2,3, we can write the first-order differential equation for the output

•. waveform in the following simplified form:

*'i dVo(t) 1
." -- f1(V(t),Vj.(t)) (5.1)

dt '

. where

'- RDCI' "" =" - KP

RPC 2
("2 - a3

7) is a fixed constant for a given technology, and fl, f 2 and f 3 are some nonlinear functions of their

* arguments. It must be noted that in case of a nonstandard primitive 1, the Equation (5.1) is obtained

- by assuming that the inverter ratio 8=8s, where 8s denotes the standard inverter ratio. We justify

* this assumption with the following arguments. In the case of falling output waveforms, i.e., a type "0"

situation, the current In through the driver transistor is primarily responsible for discharging the out-

. . . . . ..'.--.... ..-. . .... ... ..-. . ..-. ..--.- .. . ......'-- .."...-... .... .-. .-., -.-.-.-: -: -- •. i-- -' .--" '. -,i 'i- ,-'i -.-. "i-,-' '. -



140

put capacitance C1 and hence there is no significant change if, in this case, the load transistor is replaced

by a depletion device with RL=8sRD. Similarly. for rising output waveforms, i.e.. a type "1" situation,

the current IL through the load transistor is primarily responsible for charging C1 and hence there is no

significant change if, in this case, the driver is replaced by one with RD=RL/8s. It is, therefore, reason-

able to assume that even in the case of a nonstandard primitive 1, the inverter ratio is fixed at 8s, and

so 8 need not be included as the third argument for the function f,.

In the case of a nonstandard primitive i, where i=4,5, we can describe the analog behavior of the

two unknown waveforms V1 (t), the voltage across the capacitance C1 , and V 0(t), the output voltage,

with the help of the following two first-order differential equations:

dV,(t) -i(kd t) _r Ifij(Vojt),Vj(t),Vi.(t), , ,) (5.2a).-
dt 00i "--.

dV0 (t) _1(.bd°t)- =-fi2(Vo(t),V1(t),Vin(tlA,0 (5.2b1)i-
dt 0 :..,

where

RpC,".'"
0"4 --- =' -- ' , :,.

f 41 , f 42, f5 j, and f5 2 are some nonlinear functions of their respective arguments. Once again, we have

not included the parameter 8 as one of the arguments in Ohe above functions since it is reasonable to

assume that 8=8s using the same arguments as in the case of primitive 1.

From Equation (5.1), it is clear, that in a fixed technology, if we fix the input waveform Vi. and

the value of the parameter oa, then we will get the same output waveform V, in primitives 1, 2, and

3. If, in addition, we also fix the type, namely "0" or "1", in a primitive, then fixing V. is equivalent to

fixing the value of Ai , which is the measure of the input slew rate. Hence, in the case of a nonstan-

dard primitive i. where i= 1,2,3, the delays (both inertial delay and rise/fall delay) at the output, col-

lectively denoted by At0 , are only functions of two parameters, namely, Ai, and a0. In the case of

- . . . - . - - -. -. - - - - . / ; - .i - - . - . - - - -- - - . - . - -..-.- 2



141

primitives 4 and 5, from Equations (5.2a) and (5.2b), it is clear that if we fix Vi., . y. and cr i, we will

" get the same waveforms for both V, and V,. Hence, in the case of a nonstandard primitive i, where

. i=4,5, the delays At, are functions of four parameters, namely, Ai,, y, v and o'j. In the previous sec-

tion we have computed the delay functions for the case oi = a5 , where ais denotes the value of the

parameter oi computed for a standard primitive i= 1, 2, 3, 4, or 5. Using the same set of delay tables,

we will now demonstrate a technique, known as tirme scaling, to compute the delay functions for non-

standard primitives, i.e., primitives with o i ; iri.

Suppose we introduce a new time variable r = rt, where a is a scale factor, we can then rewrite

the Equations (5.1), (5.2a), and (5.2b) in terms of r as:

I .- =~(. _ fi(Vo,(,),Vi.(,r) )  (5.3) "
: ~dr r i

and

.- dV1 v) - fii(Vo(,),V('T),Vim(T),PV) (5.4a)

""dV r) - fi2(V o(7),V1 (T),Via(7),9,V,). (5.4b)

d" - i

If we now set a-ai/ois in each of the above equations, we get:

dV(r) Cris fi(Vo(,T),V.(,.)) (5.5)

* and

dV,('r)_

dr d-) _ fi V( V (r) ,V ( . ),P ,- )  
(5.6a)

-dV() _ 1 fu(Vo(r),Vi(T),Vw(T),P,y) (5.6b)

which are the same as Equations (5.1), (5.2a), and (5.2b), respectively, with t and aoj replaced by r and

.. i,.. .... :...'....2.i .-...- ..-..- / ... .. ?.... . -...*.,.7:..'..-.".-'......,.
",' ',i- -d -~m ..d.nn .*,*..d. .lll I' mgla~ll ll f- =i - . -



142

0 ris. Thus, the Equations (5.5), (5.6a), and (5.6b) represent the behavior of the standard prmitives in a

new time domain with r as the tume variable. The slew rate of the input in this new time domain is

A,/a. If Ai', denotes the delays (both inertial and rise/fall) at the output in the new time domain,

then clearly At, = aA-T. But A1,o can be obtained from the delay tables compiled in the previous sec-

tion for standard primitives for input slew rate Aj/a in primitives 1, 2, and 3, and for resistance ratio

13 and capacitance ratio -y, as additional parameters, in primitives 4 and 5. Let gj(A) denote the delay

functions tabulated as a function of input slew rate A. for standard primitive i where i= 1, 2, or 3,

and let g1(A,O, y) denote those tabulated as a function of input slew rate, resistance ratio, and capaci-

tance ratio for standard primitive i= 4 or 5. We can then outline the scheme for computing the delay

values of nonstandard primitives from those computed for standard primitives as follows:

a) Let i be the primitive number and let Am be the input slew rate. Compute cri.

b) Compute C-oiois.

c) If i= 1, 2, or 3, then obtain At(,-agj(Aia/a).

d) If i= 4 or 5, then obtain At 0  agi(Aj./cx, ,-y).

It must be pointed out that the delay functions for nonstandard primitives could be computed

just as in the standard case by introducing an additional parameter o i in each of the tables for the ith

primitive. This would then mean storing two-dimensional tables for primitives 1, 2, and 3, and four-

dimensional tables for primitives 4 and 5. By using the scaling technique outlined above, we have

managed to obtain the delay values with only one-dimensional and three-dimensional tables, respec-

tively. Thus we have considerably reduced both the CPU-storage space and the preprocessing time for

generating the delay tables However, we have used a very simple device model for the NMOS transis-

tors to derive this technique, and this could cause some errors in the delay predictions if more complex

device models are used. This is one of the factors responsible for timing errors of the delay operator.

.



143

5.3 Delay Operator for MFBs and PTB's

In this section we describe a delay operator which alters the transition times in a complete pair of

zero-delay transitions at the output node of an MFB and at normal and pullup nodes of a PTB.

We first consider an NMOS network in which each MFB is an inverter and each PTB consists of a

single pass transistor. Let n, be the output node of an inverter and let (x,u,kj), (%,-xkj,1 ) be a pair of

complete transitions of the zero-delay sequence S. computed by the switch-level simulation algorithms

given in Chapter 4. Also, suppose that n is not an ioput node of a PTB. Let Co-CAP(nd) denote the

lumped capacitance from the output node to ground. Let RD and RL be the device resistances of the

driver and load transistors of the inverter, respectively. Let us first consider the case x= 1. In this case

..* the pair (O,u,kj), (ul,kj+1 ) must have been in the sequence at the input node of the inverter. We

- model this as a type " situation in a primitive 1 with Ain=(kj+-kj)xhmm. We then compute

-. =(RDCO)AYIKP) and the scale factor uvi/Ois. Let Ar, and A7 2 be the inertial and fall delay

values obtained from the delay tables for the type "0" case in a standard primitive 1 corresponding to

the input slew rate of Ai/a. We then compute k'j=kj+aA~r/hm. and k'j+i=k'j+&AT2 /h.. and

replace the transition times kj and kj+ l by the new times k'j and k'j+l, respectively, in the sequence S.

- In the case x=O we compute the new transition times in the same manner as above, except that we

model it as a type "1" situation in a primitive 1 and compute oa1 with RD=RL/8s.

We now consider a PTB consisting of a single pass transistor. The only situation in which we will

use the delay operator is when one node among the drain and source nodes is a normal node and the

other is either a pullup node or a node of input strength. Without loss of generality we assume that the

source node is the normal node with a capacitance C2-Consider a certain phase in the simulation of the

PTB and let the complete pair of transitions (x,uk j) , (u,-xkj+s) be discovered at the source node dur-

' ing this phase. Let us first consider the state of the gate node to be fixed at I during this phase. Then

clearly the same pair of transitions must have occurred at the drain node during this phase. If the

drain node is of input strength, then this is modeled as a primitive 3 with type "0" if x-O and type "I"

. . .. o.



144

if x=1. In either case the delay values for this nonstandard primitive are computed with

Ai.=(kj+-kj)hmin and 0'3-(RpC2)/(7KP) where Rp is the resistance of the pass transistor. If the drain

node is of pullup strength then let RD and RL denote the resistances of the driver and load transistors in

the corresponding inverter and let C be the capacitance at the drain node. If x=1, we model this as a

type "0 situation in primitive 5 and compute Aj. and crs as in the case of primitive 3, shown above. In

addition, we compute -RDpRP and =CI/C,. If x=O, we model this as a type "I" situation in primi-

tive 5 and compute the same parameters as before, except that, P=RL/(8sRp). In either case we can

alter the transition times ki and kj+l by computing the delay values for the appropriate nonstandard

primitives. We now consider the case when the gate node of the pass transistor is in the u' state in the

phase. By definition, there must be a transition (ul,kj) at the gate node. Let the transition time of the

previous transition at the gate node be ki, where ki<k. If the drain node is of input strength we

model this as a primitive 2 with type 0" if x=1 and type "I" if x-0. If the drain node is of pullup

strength, we model this as a primitive 4 with type "0 if x=O and type "I" if x=1. In all these situa-

tions we compute Ai.=(kj-ki)hm, and the other parameters as in the previous case and compute the

delay values for the appropriate nonstandard primitive.

We have thus defined the delay operator for inverters and PTB's consisting of single pass transis-

tors. In the case of a general MFB, we describe a mapping technique that maps the MFB into an

equivalent inverter and use the delay operator on the inverter. In the case of a general PTB, we

describe a mapping technique based on the use of the Elmore time constant [46 which maps a com-

ponent (or a supercomponent) occurring in a phase during the simulation of the PTB into an equivalent

single pass transistor driving some equivalent load capacitance. We can then use the delay operator,

defined above, on this single equivalent pass transistor.

Consider an MEB with output node n,, and a load transistor of resistance RL. Suppose

C =CAP(no) is the capacitance at the output node of the MFB. Now, let us consider the case when a

complete pair of zero-delay transitions (O,u,kj), (u,,kj+*) occurs at the output node. We then map the

* - . ., -..



145

MFB into an equivalent inverter driving the capacitance C1, with load transistor having a resistance RL

and a driver transistor with resistance RL/ 8 s, where 8s is. the standard inverter ratio. If

(l,uk j) (u.0,kj+1 ) is the sequence of transitions at the input node of the equivalent inverter, then

(O,u,kj), (ul,kj+,) would be the zero-delay sequence at the output node of such an inverter. Thus, the

two configurations are zero-delay equivalent. We assume that these two are also delay-equivalent and

obtain new transitions k'j and k'j+ by using the delay operator on the inverter and treat these as the

new transition times at the output node n of the MCFB. Let us then consider the other case when the

zero-delay transitions (l,uk ) , (uOkj+,1 ) occur at the output node of the MFR In this case we first

construct a network of resistances with a resistance of value =RES(mi) between the drain and source

nodes of a driver transistor mi if its gate node is at the 1 state in the interval (k+1 ,kj+l + 1). Let Req

denote the equivalent resistance between n, and ground in such a network. Let Ceq denote the sum of

all capacitances at the internal nodes of the above network and CL=CI+Ceq denote the total capaci-

tance obtained by lumping all the internal node capacitances on the output node. We then map the

MFB into an equivalent inverter driving a net capacitance CL with a driver transistor of resistance

RD=kRq and load transistor of resistance RL 8SRq. The sequence at the input node of the equivalent

inverter would then be (O,u,kj) , (ul,kj+1 ). We have two zero-delay equivalent configurations once

again and we define the delay operator on the MFB to be the delay operator on the equivalent inverter.

We illustrate the mapping technique with an example shown in Figure 5.6(a). In this case, the zero-

delay sequence at the output node n0 is (1,u,100) , (u,0,200). In the time interval (200,201), we see

that the signals at the gates of transistors mm 3 ,m 4, and ms are each in the I state. Hence, we obtain

the resistive network as shown in Figure 5.6(b), with R,=RES(mi), and compute the equivalent

SI.impedance Req. The equivalent inverter, shown in Figure 5.6(c), consists of a driver with resistance

R.,, a load with resistance 8sRq. The signal at the gate terminal of the driver is (0,u,100), (u,1,200)

:( and the effective load capacitance at the output node of the inverter is the sum of the node capacitances

at nodes n,, nj, and D 2 in the original MFB as shown in Figure 5.6(c).

. . . . . . . . . . . . .



-4 r-"% - -.W r7 V-.7 r.W.P -

r , -..- r

V00 14

no

1u,11), (u,120)(u.000..ml _ m2 (u.0.-1) "

m3 n2

(UI-.,' I m4 m5 'O(U.I.-I) "!'

b) no no

n, Reg ,R1 + R4 11(R3 + Rs)

FRI4  R.5

V0

~RL 
.3 .

no

CL CAP(no) + CAP(nj)
+ CAP(n 2)

(Ou,,100), (u,1,200) - A Reg

P-8533

Figure 5.6(a): An example of an NIFB
(b): The corresponding resistive network
(c): The equivalent inverter

SIo..-ft



-$ -"-----.------..--w--- r s 7 r - -. - jr - r r r r . .

r 147

We now digress a little to discuss the implementation of an algorithm to find the equivalent con-

ductance between two terminals a and b in a network of conductances (or resistances). We can treat

such networks as weighted graphs with each edge having a weight equal to the corresponding resistance

and hence can use the terminology we developed for graphs for networks as well. Any node other

than a or b in the network is an internal node. Clearly, any set of parallel conductances can be

replaced by a single conductance equal to the sum of the parallel conductance. We define this process as

the simplification of the network. Now consider an internal node of degree 2 in the network. We can

eliminate this node from the network by replacing the conductances G, and G2, connected to it by a

conductance of value GIG2/(G +G2) between the two nodes adjacent to it. It must be noted that elim-

inating such a node does not change the equivalent conductance between the nodes a and b in the net-

work. We now extend the notion of eliminating an internal node to nodes of degree k > 2. Let no be

an internal node of degree k.> 2 in a simplified network and let nln 2, ... ni be its adjacent nodes.

Let Gi be the conductance between n and ni for each i=1,2,..., k. We then define the elimination of

no from the network to be a new network without no with a conductance Gij between each pair of

nodes n i and nj originally adjacent to no, such that Gij=G1Gj/GtO, where G,o --J"Gi is the sum of all

the conductances connected to no in the old network.

Theorem 5.1 The elimination of an internal node from a simple network does not change the

equivalent conductance between the nodes a and b in the network.

Proof Let no be an internal node of degree k.>,-2 and let n,%I ... Ink be its adjacent nodes. Let 1i

denote the current flowing through G, from ni to no in the network for each i 1,2, . k, as shown

in Figure 5.7(a). If for each i=1,2, ... , k we can show that the sum of the currents flowing away

from ni through the all the conductances Gij, j=l,2... , k jlei in the new network is equal to li,

then we are clearly done with the proof. To this end, suppose vi denotes the voltage at node ni for each

k

i=O,l .. ,k. Then 1i"Gi(vi-vo) and :I = 0. Therefore,
iI



148

Ik 12

a) GG3 6 d13

njj

nn,

Ik1

b)

G. G.

I FP-8529

Figure 5.7(a) : An internal node, ne. in a conductance network
(b) : The network obtained after eliminating n4)



- - .-- -- ---- . . . . . .

149

Givi
• ~V0=-Gt

* where Go--"Gi. On substituting this value for vo in the previous equation, we get for each
i. i=1,,..., =1

: " k
- .Gjvj

Givi.-Gi j= = i

which on simplification gives

SG 1 j(v-v) Ii.

Now the above equation is valid for each i= 1,2, ... ,k and, furthermore, its left-hand side is precisely

the total current leaving ni through the conductances Gij , j=1,2,... ,k j;&L The network obtained

after eliminating no is shown in Figure 5.7(b). Hence the proof is completed. 0

- Our algorithm to compute the equivalent conductance Gab between two terminals a and b in a

network of resistances can now be described as follows:
'...

1) Simplify the network, i.e., replace all conductances in parallel by a single conductance equal to

the sum of the parallel conductances.

2) Pick an internal node of smallest degree in the existing simple network and eliminate it from the

network.

3) Simplify the resulting network.

4) If there is an internal node in the existing network, then go to step 2. Otherwise, set Gab to be the

conductance between a and b in the final network and STOP.

Notice the similarity between this algorithm and Algorithm 4.2 used to compute the zero-delay

sequences at the output nodes of an MFB. In fact, both these algorithms can be run in parallel on the

.- •'.

.. ... - . . .. . . .. ._......... ..



150

same data base used for representing graphs. It must also be noted that the above algorithm would still

work if we had picked any internal node as the next candidate for elimination However, we, pick the

node with the smallest degree for the same reasons as explained in Algorithm 4.2. This completes our

discussion on the implementation of the algorithm to compute the equivalent conductance between two

terminals in a network of resistance..

We now describe the delay operator for a general PTB. We begin by introducing the notion of

the Elmore time constant [46] in an RC-tree. A graph T is a tree if it is connected and has no cycles. In

each tree, we can focus our attention on a special vertex called the root of the tree. If a vertex a is a

root of a tree T, then T is said to be rooted at a, denoted by T. In any tree, there is a unique path from

the root to any other vertex in the tree (in fact, there is a unique path between any two vertices in a

tree). We say that a network composed of resistances and capacitances forms an RC-tree if the subnet-

work of resistances, when viewed as a weighted graph, forms a tree and there is a capacitance from

each node of the network to ground. Note that all capacitors in such a network are grounded, ie, there

are no floating capacitors. Consider an RC-tree rooted at node no and let nlnz, . np, be the rest of

the nodes. Let Ci denote the capacitance from node ni to ground, for each i=1,2,..., p. Let Pi denote

the unique path from the root no to the node ni and let Pj--P lPj denote the portion of the path

between the root and n i that is common to that between the root and n. Let Rij denote the sum of all

the resistances in Pij. If Pij=O, then Rij=O. We can now associate a time constant 'jri, known as Elmore

time constant for each node ni in the RC-tree, defined as

= tRjjC..

Without loss of generality, we need only consider rooted trees in which the root vertex has degree 1,

since if the root vertex has degree k> 1, then we can split this vertex and obtain k subtrees, each rooted

at a vertex of degree 1. As far as computing Elmore time constants is concerned, we need only consider

the subtree containing the node for which the time constant is to be computed since the node capaci-

tances in the other subtrees have no effect on its computation. Let us, therefore, consider an RC-tree

. .. . . . . . . ..



L, 
-

151

*rooted at node no and let R, be the (unique) resistance connected to no. An example of such a network

is shown in Figure 5.& Then for each node ni we define an Elmore equivalent capacitance Ce4q to be

:* "" the ratio of the Elmore time constant ri to the resistance RI, ie, Cj 1 = i/R. For the node n, in the

network in Figure 5.8, the values for the Elmore time constant and equivalent capacitance are

T1=R(C 1+C2+C3+C4+C5+C6+C,)

Ceq. =C +C2+C 3+C4+Cs+C 6+C7

while for node n-7 they are

ir,=R,(C,+C 2+C3 +C 4 +C +C ,+C7 ) + R3(C 3 +C4+C 6+C,) + R4(C4+C 7 ) + R7C7

R3  R3+R4 R)C6+(1+ R3+R 4+R7 )C.Cq.7=CI+C 2+(1+ 4C 3+(+ )C4+q+(I+ + ""

Let us now consider a phase in the simulation of a general PTB. Let 0 be a component of the

graph that is constructed in the first part of the simulation in this phase. The only kinds of components

on which we will be using the delay operator are those containing exactly one strongest node, and that

node being of input or pullup strength. The other kinds of components would lead to conflicts or

* charge sharing. Therefore, let 0 be a component with the strongest node no and let nn2..., np be

the rest of the nodes in the component. We then construct an RC-network from 0 by replacing each

edge by a resistance equal to the resistance of the corresponding pass transistor and a capacitance

Ci-CAPn i) from each node n, to ground. We first simplify the network and then obtain a spanning

RC-tree, T, from the network. By a spanning tree of a graph, we mean a subgraph which is a tree and

includes all the nodes of the original graph. The fact that every connected graph has a spanning tree is

a standard result in graph theory, the proof of which can be found in almost any textbook on the sub-

ject, such as [501 For each node ni , i=1,2, ... , p we compute the delays for a complete transition in

its node sequence as follows. Let R, be the unique resistance connected to the root no in the tree T. In

case the degree of n is k> 1, we then split the node no and consider the rooted subtree containing n i .

: We begin by computing the Elmore equivalent capacitance Ceqi at this node, which involves the com-

putation of the Elmore time constant. We then construct an equivalent circuit with a single pass



152

n2 Rs3

Figue 5.: AnRC-Tee ootdt$

~~R2



*. - - .. - - .* .. ._ _' . .- - . - ° , . * -

153

transistor of resistance R, with drain node no and source node ni. The capacitance at node nO is

CAPtno) itself, while the capacitance at the source node of this equivalent pass transistor is C.. If no

is of input strength. then this is a nonstandard primitive 3. If no is of pullup strength, then we

replace the corresponding MEB by its equivalent inverter and treat the whole configuration as a non-

standard primitive 5. We then obtain the new transition times for node n i by applying the delay

operator on the equivalent single pass transistor configuration. This process is repeated for each node in

the component. In case the node no is of pullup strength, we delay the transitions in its sequence by

lumping all the capacitances in the RC-network at no and reduce the resulting configuration to a non-

* standard primitive 1, using the mapping technique that maps an MFB into an equivalent inverter.

,_ Let us now consider a supercomponent SC in the second part of the phase simulation of a PTB.

We will only consider the situation when SC has only one strongest component and that such a corn-

*ponent has only one strongest node. The other situations lead to conflicts or charge sharing and hence

are not handled by the delay operator. We will, first, restrict ourselves to the case when SC has only

one edge, say . Let 00 and 01 be the two components joined by and let R, denote the resistance of

the pass Lransistor corresponding to this edge. We define contraction of a component to be collapsing all

the vertices of the component into a single node with capacitance equal to the sum of all the node capa-

citances in the component. The strength of this node is the strength of the component. Without loss of

generality let us assume that 0 is the stronger component. Hence, we will be interested only in

obtaining delay values for transitions at nodes in component 01. Let n, be the node (drain or source) of

the pass transistor corresponding to in the component 01. We begin by obtaining a spanning tree T,

of 01 that is rooted at nI. Let no be the strongest node in 00. We contract the component 00 into a sin-

gle node, which we will still call no. We then modify the tree T, by including the node no and join-

ing it to n, by an edge • We then declare the root of the new tree T to be the node no. We then con-

struct an RC-tree rooted at no by replacing each edge of T by the resistance of its corresponding pass

transistor and a capacitance from each node to ground. We can now compute the Elmore equivalent

capacitance for each node in this RC-tree. Then for each node in 01 we consider a single pass transistor



154

w Ji drain node no and its associated capacitance and source node driving the Elmore equivalent capaci-

tance of the node under consideration. This then corresponds to a nonstandard primitive 2 or 4 depend-

ing upon whether the node no is of input or pullup strength, respectively.

The case of a supercomponent SC having more than one edge seldom occurs in practice. We shall,

however, discuss this situation too for the sake of completeness. We begin by constructing a spanning

tree on the components of the supercomponent with the root being the strongest component, say 0o. Let

no be the strongest node in O. Consider an edge of this tree ek joining components O and Or Without

loss of generality, assume that Oi is closer to the root than 01. In this case Oi is said to be the father

component and Oj is the son component of ek, respectively. For each edge ek, then, we apply the delay

operator on the nodes of its son component by contracting all the components present in the path con-

necting its father component to the root into a single node no and treating ek as joining no and the son

component. This corresponds to the situation of SC having only one edge ek and so we can now use the

RC-tree technique described in the previous paragraph.

We have, therefore, described the delay operator which could be used to alter the transition times

of a complete pair of zero-delay transitions at the output node of any MFB and at normal and pullup

nodes of any PTB. There are mainly two steps involved. The first step is to map the MFB or PTB into.

a nonstandard primitive and the second step is to use time scaling to compute the delay values in non-

standard primitives from those computed for standard primitives. Both these steps could cause timing

errors. However, as we shall see in Chapter 7, the switch-level timing estimates generated by this

approach are fairly accurate in a variety of NMOS circuits considered.

5.4 Filtering Operation

In this chapter, thus far, we have described a delay operator which alters the transition times in a

pair of complete transitions. Thus, if a sequence consists of only a pair of complete transitions, then we

can use the delay operator directly on this sequence. In this sequence we will consider the effect of

..............................................................



,- . . _ ... .. , , .. ... I  . ,, 7 0- -V- - - . . .. ,. . . . . . .

155

delaying a pair of complete transitions on the subsequent terms of the sequence. As an example, con-

*i sider an inverter, with the following zero-delay sequence computed at its output node.

So=(O,u~k I , (U,1,k 2) , (1,uk 3 ) , (uOk 4).

This sequence is the result of a compatible and chronological input sequence, and is, therefore, also com-

patible and chronological Let us first apply the delay operator to the first pair of transitions and com-

pute the new transition times k'1 and k'2. By definition, k'I <k'2. If k'2 <k 3 then we simply apply the

delay operator to the second pair also and compute the resulting delayed sequence to be:

S=(O,u-k' 1 ), (u,lk'2 ) , (1,u,k*3), (u,O,k'4).

This delayed sequence is compatible and chronological. If, however, k'1 <k 3 <k'2 , this means that at

the time the driver transistor of the inverter starts to turn ON, the output node is still in the u state

" " and so the (ul)-type transition cannot occur at the output. Hence we simply compute the delayed out-

*put sequence in this case to be .

S=!0O,u,k'), (u,O,k 4)

which is a partial pair of transitions that would represent a glitch at the output node. Furthermore, if

k3 <k'1 , then there cannot be any transitions taking place at the output and so the output remains in

the 0 state for all time which is represented by the sequence:

- What we have described above is the example of the filtering operator, which takes the zero-delay

sequence as its input sequence and using the delay operator computes an output sequence that provides a

better representation of the ternary equivalent of the analog waveform at the node under considera-

tion.

We now describe the filtering operation in general. Consider any sequence S of transitions. We

mark a term of S as "delayed" if the delay operator has been used previously on this term, otherwise,

,. - we mark it "undelayed." The subsequence of S consisting of all its terms marked "delayed" is called the

I~i" -. ..-- i. %-'.i.- .-i.-'.+--'--'.',i--'.-..-..-..-....,'...-..-....-..-.....'-.-.--.-......-'..'......-..--..-..-.-.-."....."-



156

delayed part of S. The rest of the sequence is the undelayed part. Thus, we can consider any sequence

of transitions to be the catenation of its delayed part and its undelayed part. Let us consider S as an

input sequence to the filtering operator. The output of the filtering operation will then be a sequence S

which is computed as described below. First, the filtering operator replaces any partial pair

(x,u,k1 ) (uxki+1 ) of transitions in the undelayed part of S by two complete pairs

(xuki) , (u,-xki-+i) , (-,x,uki+a-i) , (u,x~,ki+). This is done by procedure COMPLETE (S) used

below. We will also make use of the procedure WLNDOW ( S,kkb) that returns those transitions in S

occurring between ka and k.t The algorithm that performs the filtering is given below.

Algorithm 5.1

procedure FILTER (S)
begin

S-COMPLETE (W)-,
while there is a transition in S marked "undelayed" do

begin
(x,u,ki)- first transition marked "undelayed" in S;
(u,-ix,+t)'- next transition marked "undelayed" in S.
k'ik'i, 1 a-DELAY (kiki+l
mark (xuki) as "delayed" in S;
mnark (u,"xki+1) as "delayed' in S;

S-WINDOW (S,OAj.-
y.- final value of S;
if (y=x) then

append (x,u,k') , (u,-'x,k' 1 ) 5; "
else if (y=u) then

append (u,-xki+1 ) S;
end if

end
return S;

end

The sequence of transitions S obtained after filtering can easily be verified to be compatible and

chronological.

- ., -... . . . . . . .



157

CHAPTER 6

SIMULATING STRONGLY CONNECTED COMPONENTFS

In this chapter we discuss the use of a special windowing technique to simulate the MFB's and

PTB' within a strongly connected component (SCC). The algorithm presented splits the entire time

interval of interest [0,K] into various time slots or windows such that all pairs of signal transitions

(both partial and complete) take place entirely within one of these windows. This is achieved by main-

taining a sequential list of intervals of transitions which is updated dynamically as the algorithm

progresses. The algorithm is. in a sense, event-driven, since only those circuit blocks that are active

within a window are processed and the fanouts of the output nodes of these blocks are scheduled for

processing in the future. We begin by reviewing two well-known and classical techniques, namely, the

waveform relaxation method and the time-point relaxation method, that could be used to simulate the

blocks in the network. We will show that neither of these schemes are entirely suitable in our type of

simulation and hence there is a need for the event-driven windowing technique that we will present.

6.1 Waveform Relaxation Versus Time-point Relaxation

Let fI(N,M,KL) be a partitioned NMOS network in which the set of blocks E is further parti-

tioned into its strongly connected components EII2, ... I E,. Let [0,K] denote the time interval of

simulation. Suppose the SCC Ii is currently scheduled for processing. If Ej is a simple SCC then the

single block contained in it could be simulated during [OK] by the algorithms discussed in the previous

. chapters. Hence, suppose that j=110 1,l'0..., fllp, where p>2 and each 0j is either an MFB or a

PTB.

p. •. .



1 5

The blocks within Ei could then be simulated using a waveform relaxation iterative scheme

WRSIM described below. Let Ri be an ordering on the blocks of Zj. Without loss of generality we

can assume that the blocks of E, are placed according to Ri, i.e, R( fl )=j for each j=1,2,..., p. For

any node nk EN in the network let Sk denote the most recently computed sequence of transitions or the

present sequence at the node and let Sk denote the previously computed sequence or the past sequence

at the node. Also, let sk E 0,11 denote the initial state at node nk, which is either provided by the user,

or is arbitrarily set to 0. Let N i denote the list of all the circuit nodes contained in the blocks within

Xj. The algorithm begins by setting the present sequence of transitions at any node that has not been

previously computed to a constant sequence corresponding to the initial condition at that node for all

time [0,Kj The iterative procedure begins by setting the past sequence equal to the present sequence for

each circuit node in the SCC. The individual blocks within the SCC are then simulated according to

the ordering Ri over the entire time interval [OK] by algorithms described in the previous chapters In

each case the present sequences at the input nodes of a block are taken as the input sequences for simu-

lation and the present sequences at the output nodes of the block are updated after the simulation. The

procedure EQUAL then checks for equality between the present sequence and the past sequence during

the time interval [0,K] at each node and returns the value 0 if they are found equal and 1 if not. Here,

two sequences are considered equal if they have the same number of terms and are both type-equal as

well as time-equal as defined in Section 4.1 in Chapter 4. The iterations are carried out until both

present and past sequences are found equal for each node in the SCC.

Algorithm 6.1

Input A strongly-connected component Zi and an ordering Ri,

such that the blocks within Ei are arranged according to Ri.

Output Sequences of transitions at output nodes of each block within i.

procedure WR SIM (j,Rj,0,K)
begin

. . . . . . . . . . . . . .



159

for each node nk ENj do
begin

if (Sk =0) then
Sk -(USk,-1)

end if
end

repeat
for each node nk ENi do

Sk'Sk;

for j-I until p do
if fli is an MFB then

MFBSIM ( O OK)
else if l i is a PTB then

PTB_SIM (11j,O,K)
end if

ind-O,
for each node nk E Ni do

begin
ind.-EQUAL (SkSk,O,K)

end
until ind=O

end

We now discuss several features of the above algorithm. We first consider obtaining an a priori

ordering Ri on the blocks of the SCC. Given any such ordering, we define a node to be iritially relaxed

if it is an input node of a block within the SCC and its present sequence has not yet been updated in

the current iteration at the time of simulating the block. In the above algorithm, the present sequence

* . "of a node gets updated only after simulating the block to which it is an output node. Hence, in the case

*.. of an initially relaxed node the blocks in its fanin list are ordered after the blocks in its fanout list

Given an ordering on the vertices of a digraph, we say that an arc is a forward arc if its tail vertex

appears before its head vertex in the ordering ; otherwise, the arc is said to be a feedback arc. If we

.iconsider the vertices of the derived digraph, as defined in Chapter 3, corresponding to the blocks within

the SCC E1 , then any ordering Ri would result in a set of feedback arcs. Furthermore, the number of

feedback arcs produced by Ri is an upper bound on the number of initially relaxed nodes due to Ri.

Clearly, the best choice for Ri is one which results in the least number of initially relaxed nodes since

this would speed up the convergence of the above algorithm. However, this corresponds to finding an

ordering that results in the minimum number of feedback arcs, which is an NP-Complete problem

S-J



160

[52.53,571 Therefore, the choice of the a priori ordering Ri affects the speed of convergence of the

above algorithm and finding the best ordering, in this respect, turns out to be a difficult problem from

the computational complexity point of view. This is one of the drawbacks of the waveform relaxation

scheme.

Another aspect that needs to be considered is that the number of iterations turns out to be propor-

tional to the number of transitions at the various circuit nodes in certain circuits such as the ring oscil-

lator. This is also one of the major drawbacks in the waveform relaxation method WRM [91. Finally,

this scheme requires storing two sequences of transitions for the entire time interval [0,K] at each node

which could be a considerable amount of computer storage for large SCC's. In spite of all these draw-

backs, this scheme could still be used in our type of switch-level simulation since it is easy to imple-

ment and is compatible with the delay and filtering operations. In Appendix Ii, we will discuss the

problem of finding an optimum ordering that results in the minimum number of feedback arcs in a

digraph. We also discuss an algorithm, proposed by Younger [601. that finds such an ordering in case of a

general digraph. This would then be the a priori ordering Ri used in Algorithm 6.1.

An alternative approach is to use the time-point relaxation method for the simulation of the

entire partitioned network (N,ME). In this approach there is no need to handle blocks within an

SCC in a special way since the scheme is event-driven, as discussed in Section 2.3.1, and is used in

several digital simulators [13.17,19,25,26]. In order to use this approach in our type of simulation, we

could define an event as a transition (x,y,ki) occurring at time ki. A time queue (TQ) is used to main-

tain a list of events occurring at different instants of time. If an event (x,y,k i) occurs at some node n-

in the network, then all the blocks in the fanout list of n1 are processed at time ki. If on processing a

block at ki, a transition is observed at an output node of the block, then this is defined as a new event,

and is scheduled to occur at time k'i> ki. Thus. k'i-ki >0 is a positive delay in propagating an event

occurring at an input node of a block to an output node of the block. It is this feature that makes the

use of time-point relaxation particularly attractive for processing blocks within feedback loops.

....................................... •.... ...

. . .. .°



161

In our type of switch-level simulation, the emphasis is on generating accurate timing estimates

which is possible by using the delay and filtering operations described in Chapter 5. However, the

delay operator can only operate on a pair of complete transitions and therefore, events can be pro-

pagated through a block only in pairs. Consider an example of an inverter with a sequence

(O,u,k 1 ), (ul,k,) at its input node causing a sequence (i,uXj), (u,O,k'2) at its output node. In order to

use the time-point relaxation scheme, we would have to be able to compute the value of k'1 only with

the knowledge of the input event (O,u,kj). This is however impossible, since the delay operator needs

to know the values of both k, and k2 before it can compute k'l and k 2. Furthermore, it is possible to

.. have k'2 <k 2, which means that the input event (u,l,k2 ) causes the output event (uO,k'2) at an earlier

time, thus violating the basic assumption that one only advances in time in the TQ and never has to

backtrack. Therefore, the time-point relaxation method, as such, is not suitable for our type of simula-

tion.

6.2 Event-driven Dynamic Windowing Algorithm

In the previous section we discussed two relaxation methods to simulate the blocks in a network.

* The first method, namely, the waveform relaxation method, could be used in our type of simulation

since it is compatible with the delay and filtering operations, but suffers from several drawbacks in the

case of blocks within a strongly connected components. The second method, namely, the time-point

relaxation method, is used in several digital simulators, mainly because blocks within strongly con-

"- nected components do not pose any special problems, but it is found to be incompatible with the delay

and filtering operations, and hence, cannot be used, as such, in our type of simulation. In this section we

* . describe a new scheme to handle blocks within a SCC which overcomes most of the above drawbacks in

the waveform relaxation method by incorporating some of the ideas of the time-point relaxation

method. The main idea is to use the so-called windowing technique in the waveform relaxation pro-

cedure, as suggested in (11,12], wherein it is shown that the number of iterations is exponentially pro-

3:~~~~~~~. ....-.-...-.-.....-..-.-..-..... :..........-.....b. .............. ?... -.. ;. ".-"".-.-"- -,."-



162

portional to the size of the time interval of analysis. This suggests dividing the entire time interval of

interest into many time slots or windows so that waveform relaxation can be performed within each

window. These waveforms generate initial conditions for the next window and so on. If all the win-

dows have the same size, then there exist an optimum number of windows which minimize the total

number of iterations (and hence the total CPU time for analysis) as shown in [11--

The choice of windows, however, is very crucial in our type of switch-level simulation since the

initial states at each node for each window must be the steady states 0 or I in order to obtain good tim-

ing through the delay operator, and to perform the filtering operation successfully. This appears to be a

no-win situation since deciding on the placement of windows seems to require a prior knowledge of the

digital waveform (or sequences of transitions) at each circuit node within the SCC. Here we describe a

successful solution to this problem by using a sequential list of time intervals which is dynamically

updated as the algorithm progresses. In addition, the new scheme is event-driven, and therefore

requires no a priori ordering of blocks within a SCC. Before going into the description of the algo-

rithm, a few definitions and notations are needed.

Consider an SCC Ei consisting of a set of blocks f11,02, .. l, Let EXT denote those circuit

nodes in the blocks within the SCC for which the node sequences have already been computed. For

each circuit node nk in the SCC, let FO(nk)-FO.TT(nk)fni denote the set of blocks within Mi for

which nk is an input node.

Definition: A transition interval for a node is the time interval during which the node is in the inter-

mediate state u. Associated with each transition interval I for a node nk is a fanout list of blocks,

denoted by F(1), which is initially set to FO(nk). Let a(I) and b(1) denote the initial and final times of

the transition interval L

Let I and 12 be any two transition iitervals. We say that I, <I, if and only if b(Ij)<a(12 ). If

I, fnl12; , then we say that I and 12 are incomparable. We thus have introduced the notion of a par-

tial order <" on a set of intervals. Let L=(II 2,... i } be a sequential list of intervals. We say that

~ . ............... . ..--v- -----...



163

L is an ordered list if 1, <12< .. <I. We say that an interval I is contained in L if ICIj for some

IjEL Given any interval I and an ordered list of intervals L the following procedure returns an

updated ordered list L containing the interval L

Input : An ordered list L=11112, .. lq of intervals,
and a new interval L

Output: A new ordered list L containing L

* procedure .INCLUDE(,L)
begin

for j'- 1 until q do
begin

if ii <I then

L-L lI;
else if Inlii;4 then.. - 71+ - 1;

F(I)--F(I) U F(IJ),
else if I<I then

if 71=1 then

end if

i L-L UIr "

end if
end

return IL
end

The algorithm for the new dynamic windowing technique can now be described as follows. The

ordered set L is initialized to the empty set. Every transition interval at each node in EXTi is included

in L The set L is altered dynamically as the algorithm progresses. At any stage, we have a partition of

the entire time interval [OK] into windows by taking the final times of the disjoint intervals in L as

the boundaries of the windows. The set L plays the role of the time queue (TQ) used in the time-point

relaxation method. Here events take place over transition intervals rather than occurring instantane-

ously. If a transition interval at an input node of a block causes a transition interval at an output node

?I.

. . . . . . . . . . . ' . . -. . - h . h . . . . . . ..



164

of the block, then the end points of the new interval can be computed by our delay operator. Thus,

this new scheme is compatible with our delay and filtering operations.

Algorithm 6.2

procedure WINSIM (Ej)
begin

for each circuit node nk EEXT, do
begin

for each transition interval Ij of nkdo
begin

L4-INCLUDE (IA,)
end

end

while L is not empty do
begin

1I- first interval in L-

while ADl is not empty do
begin

K2 -b(l)'
C1,- first block in FI
for each output node nk of a r do

Sk -VWIDW(SkKl.KA)
if 0,. is an MFB then

MFBSIM (QrKiK 2)
else if (Ir is a PTB then

PTBSIM (01 K1,K2)
end if
for each output node nk Of 12r do

begin
Sk '-WNDOWW(SkK, 2
for each transition interval 1. of nk do
begin
if I< Im then
L-1NCLUE(m,L)
else if Sk Sk then
L-INCLUDEIm,U)
end if
end

end
delete the first block from F(Th,

end
delete the first interval from 1.4

end
end

a~~~7 ...'--...*' 4-



-C.°o

165

The above algorithm to process the blocks within an SCC begins by forming L by including each

transition interval of each circuit node in EXT i. The first interval in L is chosen as the window of

interest. The blocks in its fanout list, which are MFB's and PTB's, are then only for the duration of the

present window until the list is empty. Each time a block gets processed, a transition interval in an

output node is included in L if and only if one of the following two conditions are satisfied:

a) All transitions in the output node occur after the present window, L

b) The transitions at the output node, occurring during the present window after processing the

block, are different from those before processing the block.

_ After the fanout list for the present window is empty the interval is deleted from L and the

"- whole process is repeated until L is empty.

Consider the execution of the above algorithm on an SCC Mi. After the initialization of L by

including the transition intervals of the nodes in EXTi, it could get updated by the inclusion of the

* transition intervals at the output nodes of the block that has been just simulated. This could alter

either the endpoint, K2, of the present window, or could append a set of blocks to the existing fanout

list RI) of the present window. If the latter situation continues, it is possible that a block could reap-

pear in the fanout list of the present window, after it has been deleted before, and is hence resimulated

.- during the present window. We say that an SCC is well-behaved if, during the execution of Algorithm

6.2, none of its blocks is ever resimulated during the same window.

Thus, in a well-behaved SCC the delay characteristics of the various blocks are such that one does

not have to perform any iterations at all. If, however, the SCC is not well-behaved, then the algorithm

extends the fanout list of the present window and resimulates the active blocks until convergence is

achieved for the duration of the present window. This is equivalent to performing waveform relaxa-

tion iterations within the present window. It is possible to conjure up an SCC for which the initial

window gets continually extended until it becomes the entire time interval. In this case using the

above Algorithm 6.2 becomes equivalent to Algorithm 6.1. However, such a situation is of theoretical

.*. .*0



166

interest only, and probably never occurs in practical circuits. Thus, in the worst case, the new dynamic

windowing technique performs at least as well as the waveform relaxation method. In fact, the SCC's

in several practical circuits considered were all well-behaved, in which case Algorithm 6.2 performs

much better than Algorithm 6.1 in all respects. To begin with, there is no need to place the blocks of

the SCC in any particular order, since the procedure in Algorithm 6.2 is event-driven, i.e, only those

blocks that are active in a window are processed during that window. Secondly, no iterations are per-

formed in case of a well-behaved SCC, thereby saving considerable amounts of computation time.

Finally, the active blocks are processed only during a window (and not for the entire time interval),

thus causing a reduction in both computation time and memory space required to store the sequences of

transitions.

........................................



167

CHAPTER 7

MOSTIM: IMPLEMENTATION AND PERFORMANCE

The algorithms described in Chapters 3 to 6 have been implemented in a computer program called

MOSTIM. a switch-level timing simulator for NMOS circuits. MOSTIM is written in FORTRAN and

runs on a VAX 11/780 computer with the UNIX operating system. It has about 9600 lines of FOR-

TRAN code which includes about 5800 lines from the front end of SPICE2G.1. The main flow chart

for MOSTIM is shown in Figure 7.1. The NMOS network is described to MOSTLM in the same input

description language as SPICE2 [11 The three overlays MAIN, READIN, and ERRCHK, borrowed from

SPICE2G.1, read in the input file describing the network and establish the data base to store the neces-

sary information about the circuit elements, their model parameters, and interconnection, etc. A

dynamic memory manager is used to allocate space for each element. The input description language

allows the use of a multilevel hierarchy of subcircuits, which is flattened out in the ERRCHK overlay.

This overlay als. checks for topological errors, such as a node connected to less than two circuit ele-

" ments and a loop of voltage sources as well as errors in the specifications of the model parameters for

* the circuit elements. The subroutine PARTITION then partitions the NMOS network into MFB's,

PTB's, and SRC's, using algorithms described in Chapter 3 of this thesis. The set of blocks in the parti-

- tioned network is then further partitioned into strongly connected components (SCCs) and these are

ordered by subroutine ORDER. The subroutine SIMULATION processes the SCC's i the above order-

ing. If an SCC is simple, then the appropriate subroutine SRC_SIM. MFB SIM, or PTB_SIM, described

in Chapter 4, is used to simulate the block for the entire time interval of interest. If an SCC contains

- more than one block, then it is simulated by subroutine WE_SIvl, which, in turn, uses subroutines

* MFBSLM and PTBSIM to simulate the individual MFB's and PTB's over windows in time, as

described in Chapter 6. The subroutines MFBSLM and PTB_SIM interact dynamically with

"' 'LJ M" " ' ' ''"'-a 'i" -'ia:. .. ..~i~' 'm 1. .. . . ." .. .. . . . . . . . . . ..- -- t' " " '



168

MAIN

READIN

ERRCHK

PA RTIT ION

ORDER

SIMULATION

SRC...SIM MFS...SIM PTB...SIM

DELAY

FILTER
FP-61 3

Figure 7.1 Flow chart for MOSTIM



LA

169

subroutines DELAY and FILTER, described in Chapter 5, to alter the transition times of the zero-delay

. -. sequences produced and filter the resulting delayed sequences. Extensive use of linked lists is made

throughout the program. These linked lists are implemented in FORTRAN with the help of one-

dimensional arrays.

We now evaluate the performance of MOSTLM based on its computational speed (complexity) and

the accuracy of its switch-level timing (SLT) estimates. We first evaluate the computational speed by

considering several examples. The first example is a combinatorial NAND gate implementation of a

one-bit full-adder circuit, shown in Figure 7.2, which was cascaded to produce full-adders from one to

four bits. Table 7.1 shows the rate of growth of CPU-time versus the number of transistors. The total

CPU-time taken by MOSTIM includes the time taken for partitioning and ordering, and also the time

* -for the switch-level simulation, the delay and filtering operations. The total job times taken by SLATE

*. [3] and SPICE2G.1 [I are also provided for comparison.

. Table 7.1 The growth-rate of CPU-time of MOSTIM, SLATE, and SPICE2G.1

Adder Number of CPU - Seconds
Bits Transistors MOSTIM SLATE SPICE2G.1

1 33 1.40 61.1 184.0
2 66 2.03 133.2 371.1
3 99 2.55 195.8 556.3
4 132 3.45 252.9 767.0

This table shows that the total time taken by MOSTIM is fairly linear with circuit size and is about

'- 120-200 times faster than SPICE2G.1 and about 40-60 times faster than SLATE. A second example is a

chain of identical inverters. Figure 7.3(a) shows a chain of five inverters. Throughout this chapter we

....



170

Ao, C-1

X1N

Figure 7.2 A one-bit combinational full-adder



I 1 I . - " "- ". -,,-."'-- . --. . -. . . , _-. ,

171

"00

r /10 5/10 r1  /10 L 5/10 5/10

Hi 1/5 a05 10/5 10/5 4- 0/5

FP-68520

Figure 7.3(a): A chain of .5 inverters



172

will represent analog waveforms produced by SPICE2G.1 with solid lines and the ternary digital

waveforms produced by MOSTIM with dotted lines. The waveforms at the output of every fifth

inverter in a 50-inverter chain produced by both MOSTLM and SPICE2G.1 are shown in Figure 7.3(b).

Table 7.2, below, gives the CPU-times taken by both MOSTIM and SPICE2G.1 for a chain of identical

inverters. These values are plotted against the number of inverters in the chain in Figures 7.3(c) and .
=

7.3(d).

Table 7.2: CPU-times taken by MOSThM and SPICE2G.1 on a chain of inverters

Number of CPU - Seconds
Inverters MOSTIM SPICE2G.1

5 0.62 21.63
10 0.87 43.10
15 1.18 70.35
20 1.48 121.83
30 2.05 235.98
50 3.19 645.28

From both of the examples considered above, it can be concluded that the CPU-time taken by MOSTLM

grows linearly with circuit size and is around two orders of magnitude faster than SPICE2G.1.

We now consider several examples of NMOS circuits simulated using MOSTIM. A one-bit full-

adder circuit with pass transistors used to realize part of the logic is shown in Figure 7.4(a) and a cas-

. caded two-bit adder in Figure 7.5(a). The input and output waveforms in both these circuits are shown

in Figures 7.4(b) and 7.5(b). respectively. The presence of a partial pair of transitions in a ternary digi-

tal waveform indicates the presence of a glitch in the corresponding analog waveform. We classify a

glitch as a major glitch or a minor glitch according to whether or not the glitch crosses a threshold

". .- . . .. ,



173

vi.

V5 Fl

V1 0

V15

V2 0

V2 5

V3 0

V 3 5

- * V4 0

V4 5

V5 0

828 48 69 88 to8
Time (ns) -

Figure 7.3(b): Waveforms for a 5O-inverter-chain circuit



174

MOSTLX

CPU-seconds

09 36 40 so
Number of inverters -

Figure 7.3(c): CPIU-time taken by MOSTIM on a chain of inverters



175

SPICE2G. 1

CPU-secon~ds

8 828 38 46 so
Number of inverters

.4 Figure 73d): CPU-time taken by SPICE2G.1 on a chain of inverters



176

5V

&5 115/5~

205~ Q35pI
*.2£

CLO35-I r-. 
1.,

5V 
"-"

__ 035p m.

20/ 5 5/ 

-FIw

'" "L " 
10 

'

0 0 7f :I It

~~5/5)/

Figure 7.4(a) : A one-bit full-adder with pan trnssors 
V"



177

Input 1

Input 2

Carry in 3

* . Carry out 4

Sum out 5

828 48 Be
Time (ns) -

Figure 7.4(b): Waveforms for a one-bit full-adder with pas transistors

.................................................................



178

SOUU

Figure 7.5(a) A two-bit full-adder with Paw transistOrs



1% . - .

179

A0

B1

0

A

Col

25 58 75 10 25 15e 175
Time (ns)-

Figure 7.5(b): Waveforms for a two-bit full-adder with pass transistors



180

limit. MOSTIM indicates only major glitches in the plots of its waveforms. However, every glitch,

major or minor, is flagged and printed out in a separate diagnostic file for each circuit if it is required

by the user. An SR-flip-flop circuit is shown in Figure 7.6(a) and its waveforms in Figure 7.6(b). A

three-stage ring oscillator is shown in Figure 7.7(a). The final partition of the interval [O.Ons,40.Ons]

into windows along with the list of blocks to be simulated in each window are given in Table 7.3.

Here MFB1 is the two-input NOR gate, and MFB 2 and MFB 3 are the two inverters, respectively. The

waveforms for this circuit are shown in Figure 7.7(b).

A one-bit register is shown in Figure 7.8(a). It is used to realize a three-bit shift register shown in

• Figure 7.8(b) which can shift both left (down) or right (up). Pass transistors are made use of in several

. places in the circuit, first, to load the input data onto a bus (node 1), then to transfer data between the

- bus and registers and also to precharge the bus. The input waveforms applied and the output

waveforms produced are shown in Figure 7.8(c). A tally circuit composed of only pass transistors [56]

is shown in Figure 7.9(a). In this circuit, all the pass transistors constitute a single PTB. The

waveforms for this circuit are shown in Figure 7.9(b). The simulations of the three-bit shift register

circuit and the tally circuit test the performance of the mapping technique of the delay operator using

- Elmore-equivalent capacitances as described in Chapter 5. Finally, we consider a PLA with 149 transis-

tors as shown in Figure 7.10(a). This network is partitioned into 42 MFB's and 12 PTB's. The only

nontrivial SCC in the partitioned network consists of 17 MFB's and 4 PTB's. The waveforms for this

circuit are shown in Figure 7.10(b).

Among all the networks described above, let us first consider those networks with feedback.

Table 7.4 compares the performance of the waveform relaxation method (Algorithm 6.1) and the new

*i event-driven dynamic windowing scheme (Algorithm 6.2) used to simulate the blocks within the

,.. SCC's. This table demonstrates that the new windowing technique performs considerably better and is

more efficient than the waveform relaxation method. In Table 7.5 we provide a list of all the circuits

that have been simulated using MOSTIM thus far, along with the number of transistors (indicated in



5v

Two- Input
0/ 2/ NANO Gate

W/L20I

SR F 10 Fop

Figure 7.6(a): An SR-flip-flop



. . . . . . . . . . . .. . . . . . . ..k*. . . . -

182

v 2

v 3

V 4

V5

V 7

Time (ns)-

Figure 7.6(b): Waveforms for an SR-flip-flop



183

V/00

'SA A/0

0 C" 0 -

C4

Figure 7.7(a): A three-stage ring oscillator

**... -. .. M61



184

tt

V3

V4

920 40 8 89 lee '
Time (ns) -

Figure 7.7(b): Waveforms for a three-stage ring oscillator



AD-RI61 71 SITCH-LEVEL TIMING SIMULATION 
OF NOS VLSI 

3'
(METAL-OXIDE-SEMICONDUCTOR YER..(U) ILLINOIS UNIV AT
URBANA COORDINATED SCIENCE LAB V 8 RAO JAN 85 R-1932

UNCLASSIFIED N9614-94-C-9149 F/O 915 N



I.3.

.211W

11111'* ' 11111.8
JJJJJ_ [25 H.14 .l~6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 963 - A



185

Table 7.3: Final list of windows for a three-stage ring oscillator

WINDOW BLOCKS

0.00 1.08 MIFBI
1.08 346 MFB'
3.46 4.65 MFB3
4.65 6.49 MIFB,
6.49 7.68 MFB2
7.68 9.52 MFB3
9.52 10.73 MFR,

10.73 12.57 MFB2
12.57 13.78 MF 313.78 15.62 MFm,
15.62 16.83 MFB2
16.83 18.67 MFR3
18.67 19.88 MmB
19.88 21.72 My%
21.72 22.93 MFB3
22.93 24.77 MFB I
24.77 25.98 MFB2
25.98 27.82 MFB
27.82 29.03 MFB1
29.03 30.87 MFB2!
30.87 32.08 MFB3
32.08 33.92 MFB1
33.92 35.13 MFB2
35.13 36.97 MFB3
36.97 38.18 M1 ,
38.18 40.02 MFBI!

. . . . . .



186

047 1) IN OLxyB V ATA OUT

10/3

Ito/&

Figur 7.16): A one-bit regisw



v- - - - n n n

187

OAEj~~I'rSAJ

ONE-I8iT Rff4I5rae

©~ ~ T

CLOCM t)Coc

Figure 7.8(b): A three-bit shift register



-. :1 -21 --.- 7

--

188

Input Data

Data Bus

Bus Precharge

Bus *Reg

Reg Bus

Delayed

Clock C

Shift Right

Shift Left

Bus Output -

V(13)

V (14)

V(15)

V(16)

V(17)

V(18)

8 2 48 68 B8 188
Time (ns) -

Figure 7.8(c): Waveforms for a three-bit shift register



-. 189

zo Z2IZ

Figure 7.9(a): A tally circuit composed of only pas transistors



190

x2

x 3

z

z 2

z3

828 48 6 88
Time (ris) -

Figure 7.9(b) .Waveforms for a tally circuit



I 191

Jr. I I I £ I I I 3 N

L

.r"L .i.-

•- 
'.*)

4W

I4 s0 I S

*9~ at.

28~ 2-

it,-

-,. ., o : -_... - .-.
Figure 7.10(a) : A PLA circuit

.*8:.. *:

~~8*8*~*J*8*~*.****.*.***. 8



192

V (56)

V (57)

V (58)

V(59)

V(35)

V(37)

V (38)

V(39)

V(40)

V(41)

20~~~ 48 60w i2

Time (ns) -

Figure 7.10(b): Waveforms for a PLA circuit
.9



T_

193

Table 7.4 CPU-seconds taken by Algorithms 6.1 and 6.2 to simulate networks with feedback

MOSTIM
CIRCIT SPICE2G.1

_______________________Algorithm 6.1 Algorithm 6.2 _____

3-stage Ring Oscillator (7) 5.23 1.05 104.60

SR-flip -flop (12) 1.33 0.86 90.37

3-bit Shift Register (29) 19.23 6-55 363.30

15-stage Ring Oscillator (31) -1.36 139.85

2-bit Full Adder (42) 7.82 5.27 794.25

*PLA (149) 13.56 5.85 827.43

parenthesis), and the CPU-time taken by MOSTIM. The CPU-time taken by SPICE2G.1 is also given

for comparison.

From each of the waveforms in the circuits described above, one can easily verify that the SLT

estimates generated by MOSTIM for pairs of complete transitions are fairly accurate. More precisely,

consider the sequence of transitions S, at some node in a circuit that is produced by MOSTLI and letS

be the ternary equivalent of the analog waveform produced by SPICE2G.1 at the same node. We then

consider the extended measure A(SS), defined in Equation 4.2 of Chapter 4. to be the measure of the

accuracy of the SLT estimates generated by MOSTIM. Figure 7.11 is a scatter plot of the transition

times of complete pairs of transitions as computed by MOSTLM against the corresponding threshold

crosing times of the analog waveform as computed by SPICE2G.1 for each node in each of the circuits



79 Ja .- C P4 . Wi .. %

194

Table 7.5: A list of circuits simulated by MOSTIM - .

CIRCUIT MOSTIM SPICE2G.1

3-stage Ring Oscillator (7) 1.05 104.6

SR-flip-fltop (12) 0.86 90.37

Tally circuit (18) 3.59 132.37

1-bit Full Adder (21) 1.28 119.32

3-bit Shift Register (29) 6.55 363.30

15-stage Ring Oscillator (31) 1.36 139.85

2-bit Full Adder (42) 5.27 794.25

50-inverter chain (100) 3.19 645.28

4-bit Combinatorial Full Adder (132) 3.45 767.00

PLA (149) 5.85 827.43

listed in Table 7.5. The maximum percentage error in the timing estimates produced by MOSTIM in

all these circuits is 8.75%. For purely combinational logic circuits with no pass transistors, such as the

chain of inverters shown in Figure 7.3(a), the error is less than 3% N

In the case of RSIM [261 which is also a switch-level timing simulator for MOS circuits, some of

the timing predictions even for purely combinational circuits have been reported to be around 30% of

those of SPICE2. For circuits with chains of pass transistors, the predictions are even less accurate. In

. . .. . . . . .... . .. . ... ....... ....



I'qo

195

MOSTIM

Transition

Times in (ns)

4e-

2-

6- ' 1 1-' .

6 2 46 88 e8 Joe

Threshold crossing times
in SPICE2G.l (ns)

Figure 7.11: A scatter plot illustrating the timing accuracy of MOSTINIv

U .°.



196

comparison. the results presented in this chapter indicate that MOSTIM is capable of generating timing

estimates within IO'Y7 of those of SPICE2G.I at speeds of around two orders of magnitude higher, which

is around the same speed improvement as obtained with RSIM.

.. i



* * - I ** - - . * , - _ . * q Y .. I .*-w,--r-.I - . . . ---- . .. •..

197

CHAPTER 8

CONCLUSIONS

The aim of switch-level timing simulation of VLSI circuits is to provide the circuit designer with

digital waveforms at various nodes in the circuits with special emphasis on the accuracy of the times at

. which the signals change state. In this dissertation we have described a switch-level timing simulator

for NMOS circuits which is a fast and accurate simulation tool that gives adequate information on the

performance of the circuit with a reasonable expenditure of computation time even for very large cir-

cuits. In Chapter 2 of this thesis we reviewed some of the existing simulators for integrated circuits

S:.and classified them into two distinct categories, namely, analog simulators and digital simulators. We

found that digital simulators in general operate at sufficient speeds to test entire VLSI systems, since the

circuit behavior is modeled at a logical rather than a detailed electrical level. However, these simula-

tors do not model the dynamics of the circuits properly and are often useful only in predicting steady-

state responses of the signals. Analog simulators, on the other hand, predict both steady-state and tran-

). sient responses fairly accurately, but are cost-effective only for circuits with less than a few thousand

.* components, which are considered small in the present day VLSI technology.

The algorithms presented in this thesis have lead to the development of a switch-level timing

simulator for NMOS VLSI circuits called MOSTIM, an attempt to bridge the gap between analog and

digital simulators. MOSTIM performs simulations at a switch level and, hence, runs at speeds close to

i those of digital simulators. Furthermore, it uses a delay operator to delay signal transitions accurately

and, hence, provides the timing accuracy comparable to those of analog simulators.

In Chapter 3, we discussed the algorithms for partitioning the input network into various blocks

and the ordering of these blocks for processing. The key to the partitioning strategy is to divide the set

• 7--



198

of enhancement transistors into driver transistors and pass transistors. We presented a graph-theoretic

, algorithm that achieves this in .mputation time which is linear with the number of enhancement

devices. The driver transistors were then grouped together to form multifunctional blocks (MFB) and

the pass transistors were grouped together to form pass transistor blocks (PB). We created a third type

of block called input source (SRC) to model voltage sources, clocks, etc. We then constructed a directed

graph G with vertices corresponding to the various circuit blocks, namely, MaB's, PTFB's, and SRC's, and

directed arcs describing the interconnections between them. A modified version of a depth first search

known as Tarjan's algorithm [31] is used to detect strongly connected components (SCC) in G. The ver-

tices within an SCC correspond to blocks forming feedback loops in the original circuit and are col-

lapsed into single vertices, thus creating an acyclic reduced graph G. The vertices of G are then placed

in topological order for processing.

The algorithms for the switch-level simulation of multifunctional blocks and pass transistor

blocks are presented in Chapter 4. An MFB is a single output, multiple input, unidirectional block,

*. whose steady-state output is a Boolean function of its inputs. A graphical technique using internal

- node eliminations is used to evaluate the state of the signal at the output, given the input signal states.

. No attempt is made to evaluate signals at the internal nodes of the MFB. In the switch-level simula-

tion of a PTB, however, the signal at every node within the PTB is evaluated. The transistors in a PTB

are modeled as bidirectional switches whose conduction states (e., open, closed, or intermediate) are

controlled by the signal at the corresponding gate terminals. A strong node forces its state on a weaker

* node connected to it via a path of conducting transistors at any given time instant. The algorithm is

quite similar to the one used in conventional switch-level simulators such as MOSSIM [191, except for

the interpretation of the u state (or X state as used in MOSSIM). This algorithm also handles situations

"" of conflict between two strong signals, charge sharing, etc.

The switch-level simulation algorithms described in Chapter 4 generate zero-delay ternary

,- waveforms for each pullup node in an MFB and each normal node in a PTB. A delay operator



199

described in Chapter 5 is used to delay pairs of complete transitions (i.e. O-u followed by u-1. or

1-u followed by u-O) in the zero-delay waveforms. The delay operator computes appropriate delay

values by taking several parameters into account, such as block configuration, loading, device

geometries, and input slew rates. For NMOS technology, knowing the delay characteristics of five

different circuit primitives is sufficient, within reasonable limits of accuracy, to compute delays through

an" general MFB or PTB. These five primitives are simulated using an accurate circuit simulator such

as SPICE2 [1 or SLATE [3], for various device and circuit parameters, and the delay values are

extracted and stored in a delay table. This is done in a presimulation phase. During simulation. MOS-

TIM then maps an MFB or a PTB into one of the five primitives and obtains the appropriate delay

value through fast table lookup methods, and interpolation when necessary.

In Chapter 6 we discussed techniques used to process blocks within an SCC. In order to perform a

switch-level simulation of a block (MFB or PTB), the waveforms at the input nodes to the blocks must

necessarily be known. Since this is not possible for blocks within an SCC, these have to be handled

*" separately. A waveform relaxation technique could be used, wherein the blocks are processed itera-

tively in a predetermined order with unknown input waveforms initially relaxed and output

waveforms constantly updated. Several drawbacks of this technique were discussed. A new dynamic

windowing method that overcomes most of these drawbacks was presented. In principle, this new

scheme is quite similar to the classical event-driven time-wheel approach used in conventional logic

simulators [13,19], except that events take place during intervals of time instead of occurring instan-

taneously. The entire time interval of analysis is automatically partitioned into variable size windows

* such that the signal at each node in each block within the SCC occupies a steady state (i.e., 0 or I) at the

window boundaries. Associated with each window is a set of blocks scheduled for processing during 7

.. that window. This new scheme does not require an a priori ordering of blocks within the SCC, and is

also seen to take less computation time and less storage than the waveform relaxation method.

a................................................

............ . . . .. . . .. . .o*... .



200

A number of NMOS circuits have been simulated using MOSTIM. The performance is discussed

in Chapter 7. In all the circuits simulated thus far, MOSTIM provides timing information with an

accuracy of within 10% of the timing provided by SPICE2 [1] at approximately two orders of magni-

tude faster in simulation speed. MOSTIM also provides much better timing estimates than RSIM [26] at

approximately the same speed of simulation.

We now consider several extensions that could be used to improve the performance of MOSTIM.

At present, MOSTIM is capable of only handling NMOS circuits. A few modifications are needed to

include CIOS technologies as well. In the partitioning scheme, the graph used to represent the net-

work would now consist of two types of edges, namely, n-type and p-type edges, corresponding to n-

channel and p-channel transistors, respectively. In conventional CMOS circuits, pass transistors are usu-

ally implemented using n-channel and p-channel devices having common drain and source nodes. The

edges corresponding to these transistors can be easily detected and removed from the graph. Once this is

done, a pullup node can be identified as a node adjacent to both n-type and p-type edges in the resulting

graph. One can then use the scheme described in Chapter 3 of this thesis to complete the partitioning.

An MFB in CMOS would consist of a network of n-channel devices between the pullup node and

ground and a dual network of p-channel devices between the pullup node and VDD. A PTB would also

consist of both n-channel and p-channel pass transistors. The algorithms to perform the zero-delay'

switch-level simulation remain primarily the same, except that a p-channel device is modeled as a

switch that is closed when its gate signal is at 0 and open when its gate is at 1. The delay primitives

have to be redefined by using CMOS inverters and pass transistors and the delay functions have to be

recomputed for these new primitives. The mapping techniques used by the delay operator must now

also account for the resistances of the p-channel devices in addition to those of the n-channel devices.

With the above modifications MOSTIM can be extended to handle CMOS circuits as well.

The use of ratioed logic, as suggested in [20,211 would result in a better scheme to handle conflicts

in a PTB. The delay operator has to be extended to provide better timing in these situations. Providing

V .... . ..°



*.-7 71 -..

201

better timing estimates in case of charge sharing also needs to be investigated. Most conventional net-

work extractors create an RC-network to model the interconnect regions in an integrated circuit. The

resistance of the metal lines can be neglected. but the resistances of the polysilicon and the diffusion

lines have a considerable effect on the propagational delays in the circuit. Using reduced-order model-

ing techniques, such as the Elmore time-constant approach, to generate equivalent lumped capacitances

at each node in the circuit is another topic that needs to be investigated. Further research is also needed

to use a MOST[M-like approach for other technologies, such as bipolar. ECL, and 12 L

Thus far, we have only considered the deterministic simulation of integrated circuits. It is well-

known, however, that random fluctuations inherent in the IC manufacturing process affect the perfor-

mance of VLSI circuits significantly. This is further aggravated by the scaling down of device sizes and

* the interconnect regions. The circuit designer is, therefore, often interested in obtaining some statistical

.- information about the timing in the circuit. A Monte-Carlo simulation of the entire VLSI circuit can

prove to be prohibitive in terms of CPU-time. As an alternative, one could compute the statistical

behavior of the delays through sta:viari primitives using the conventional Monte-Carlo methods and

" . store the necessary information in tables. One could then map a general block in the network onto one

of the standard primitives and obtain the statistical timing information through a look-up table. This

. approach is very similar to the operation of the delay operator in MOSTIM. and it needs further inves-

•. tigation.

r



202

APPENDIX I

PLOTS OF DELAY FUNCTIONS

In this appendix, we will show plots of the inertial delay, At1. and the rise/fall delay, At 2, in

both types, *0" and 01, as functions of the input slew-rate Aj. for standard primitives 1, 2Z and 3, and

as functions of 13 and y, in addition, for standard primitives 4 and 5 for the following technology.

VTOE=+lO0 V

VTOD=-3.O V

VDD=+5.O V

KP= 100 IpA/V 2

Standard devices:

Load :W=5Sp,L=10j&

Driver: W= 10IA,L=5 I

Pass :W=I0pL,L=10p&

Standard capacitances:

Cls=0.01 pF

C2S=001 pF

C~s=0.01 pF

C~sO0.I0 pF

Cs0.10 pFI%

I %.



Type *0 2. Type '0' 205*1 T • .--.

3t

24 
"

to~~. is210I

1+n

-5T-.a S I IS 2 6 S I i 2'

2.S l ii l -- i l lr l, 3i- *~ l, * " " '

S,..----

aiu n  i iin

Figue AI2: Dlayfuncionsforstandard primitive2

.............................
. .. .. ,.... . . . . . . .



20621Type '0' Tp

in ii

.2yp '1* * ' Type '1'

at 1  At 2

SSBLfl

Figure Al.3: Delay functions for standard primitive 3



203

Dimensionless parameters:

* VyEIO.1,1.,I0.0)

8=4.0

* - The plots are shown in Figures AI to A1.11. The delay values in all these plots are in nano

* . seconds.



1 1 7 .1 7 1. 7 2 1 ;-m -P -. - I- - .-a 7 . . - 1 - 1. i ,

Is- 204

Type '0' Type 'O'

14a .

Stt

I..

~1n in

"T"

22

atI  at 2.

.0
_________ _____ 

'.
I a II I I I I i I I I I I I 

I l-,i

l At1 SII S I S2 .

in in

Figure A1. Delay functions for standard primitive I



' 5T 8m 0.1207

* ~ at 1

Y-0.1,1.0,10.0

B 1.0 T 85.0

.0.1 

y O.1

y -1.0,10.0
Y - 1.0,10.0

in in

F igure A1.4 inertial delay for standard primiuve 4, tYPe0



2f-- 208
8 - 0.1

Ei €2

Y 0.1,1.0,10.0

S S I

B 1.0 B '5.0

at

2 a 2..

y11.0

' -1.0 10 .0 .~

,mY.1 'o., 1 0/2 .1 o

A

in in

Figur A1.S Rime delay for stadard primitive 4, type O0-

,..
.. .. . . . . . . ... ... .. - S00-



*~~~ .
2T8 0.120

at 1

tO.i

L-i-f 0-10 0*

Is •.

ii

go I I I a I

S 8=1.0 - B=5.0

i ' ' y -0.1,1.0 y 0

1l.0

I S 0I 15 3 0 S II iS U1

A At

in in

Figure A1.6 Inertial delay for standard primitive 4, type "1N

.. .. . .



210
4 - 0.1

2

-Y *0.1,1.0,10.0

in

5TB 1.0 Ta-5.0
.40.

2 2

2-

y-1.0

-10.0

in iniSS 3

Figure A1.7 Fall delay for standard primitive 4. type



T-7 1.~. 7. ;

211

at is 0.1

1

asis is 20
&in

31--1.0 B 5.0

=10.0 y-10.0

IsI

in inf

Figure A1.8: Inertial delay for standard primitive 5, type *OP



4-- 212
*a -0.1

y 10. 0

Y8-5.0

0.11

210..

1.

A. 0.in

in 
i

Figure Al.9: Fall delay for stadard primitive 5, type "0"



8-0.1213

41. y 1.0.0 .
y 1.0

a t

8 -5.0

1.0*1.

y-0.1

............. . .. . .



B-0.1214

10.

2 1..0B05.

4Y - 0.

44

10.
10 . 1

Y .4

0.1 1 0
0. 1.

in in

Figure A1.11 Rise delay for standard primitive 5, type "I



215

APPENDIX U

MINTMUM FEEDBACK ARC SETS FOR DIRECTED GRAPHS

A minimum feedback arc set for a directed graph is a minimum set of arcs which if removed

leaves the resultant graph free of directed cycles. This problem has attracted the interest of both

mathematicians and engineers over the recent years. Feedback is inherent in most engineering applica-

tions, such as sequential switching circuits, control mechanisms, regulatory devices, and large-scale sys-

tems. A good deal of success has been achieved, however, in analyzing complicated systems without

feedback. Therefore, in order to analyze systems with feedback, an appropriate number of feedback

loops are broken to reduce the system to one without feedback. The complexity of this analysis, on the

other hand, increases drastically with the number of loops to be broken: hence, a knowledge of

minimum feedback arc sets would be extremely useful.

" . The problem of finding minimum feedback arc sets (FAS) in directed graphs, when phrased as a

decision problem, is known to be NP-Complete [52,53,571 This problem remains NP-Complete even for

a restricted class of graphs such as line-digraphs [58] In this appendix we shall study an algorithm pro-

posed by D.H.Younger [60) which attempts to solve the FAS problem by establishing a relationship

between feedback arc sets and orderings on the vertices of a digraph. It will be shown that this algo-

rithm does indeed find a minimum feedback arc set in any digraph, but could take exponential time, as

should be expected, on certain digraphs. The problem of finding minimum feedback arc sets for planar

graphs, however, has been shown to be solvable in polynomial time [59

* We begin by establishing a relationship between feedback arcs of a digraph and orderings on its

""- vertex set. In fact, a minimum feedback arc set is shown to be determined by an optimum ordering R

of vertices which minimizes the number of arcs (uv) such that R(u),R(v). A key concept used to find

.'.. . . . . . . . . . . . . . . . . .- .---- . . .



216

optimum orderings is that of an admissible ordering [60. While finding optimum orderings may be

hard (since the problem is NP-Complete), we will show that finding admissible orderings is relatively'

much easier since it can be done in polynomial time. For most digraphs of interest to the practical user,

admissible orderings turn out to be almost as "good" as optimum orderings in that they generate "fairly

small" feedback arc sets.

We begin with some definitions and notations. For a directed graph a feedback arc set is a set of

arcs which, if removed, leaves the resultant graph free of directed cycle. A feedback arc set is

minimum if no other feedback arc set for that digraph has fewer arcs. For any sequential ordering R on

the vertices of a digraph G(VA), let FR=I(uv)EA such that R(u) R(v)) designate the feedback arc

set determined by R. Also let Q(R)=1FRI.

Definition: A sequential ordering R" is said to be an optimum ordering if Q(R*)h<Q(R) for all sequen-

tial orderings R. Given a sequential ordering R of a digraph, a consecutive subgraph is an induced sub-

graph on any (non-empty) set of vertices that are consecutively ordered by .

We are now ready to state some properties of optimum orderings from [601.

Theorem A2.1 A feedback arc set F of a digraph G is minimum if and only if there exists an

optimum ordering R such that F=F.

Proof See [60].

The above theorem clearly illustrates the equivalence between optimum orderings and minimum

feedback arc sets of a digraph. Hence the problem of finding optimum orderings is indeed NP-Complete.

Theorem A2.2 The set of optimum orderings for a given digraph is invariant under the removal of

self-loops and directed cycles involving two arcs.

Proof See [601.

In accordance with the above theorem, two digraphs are said to be order equivalent if the removal

of all self-loops and two-cycles from each digraph results in isomorphic graphs. A subgraph of a

"..................................................n..m.ra!!.... ...................



217

digraph obtained by removing all self-loops and two-cycles is called the reduced graph. Therefore, an

optimum ordering for a digraph is also an optimum ordering for its reduced graph. It must be noted,

however, that a minimum feedback arc set of a reduced graph is only a subset of some minimum feed-

back arc set of the original graph.

- Theorem A2.3 Given an optimum ordering R of a digraph G(VA), let G, be any consecutive sub-

graph of G according to R, and define

F1 =(uv): R(u)>R(v) and u,vEV(G1 )) and F2,RF 3 -F 1 , . Then

(a) F1 ,3 must be a minimum feedback arc set of G,;

(b) F2 ,p must be a minimum feedback arc set of the subgraph H obtained from G by deleting all arcs

and coalescing all vertices of Gi.

Proof : See [601

It follows from part a) of the above theorem that for an optimum ordering R on a digraph G, for

any two vertices u and v such that R(v)=R(u)+1, the number of arcs from u to v is no less than the

number from v to u. In fact, a much stronger result follows.

Notation Suppose G, and G2 are two disjoint induced subgraphs of a digraph G. We use (G1 ,G2 ) to

denote the set of arcs in G with tail vertex in G, and head vertex in G2. Given an ordering R. two dis-

joint consecutive subgraphs G1 and G2 are said to form an R-adjacent pair, denoted by [G1,G21 if

minlR(v): vEG 2 l=maxlR(u) : uEG1+1.

Theorem A2.4 Given an optimum ordering R for a digraph G, let [G1,G2] be an R-adjacent pair of

disjoint consecutive subgraphs of n, and U 2 vertices, respectively. Then

a) I(G1,G2)I>.I(G 2,G,)I, and

b) if KG1,G2)1F4G,G 1 )I then the ordering R', obtained from R as follows, is also optimum:

Rlu)=R(u) if u is neither in G, nor in G2.

Rfu)=R(u) -n, if ulEG 2.

.?..-.



I

218

R(u)=R(u)+n 2 if uEGI.

Proof See [601.

Definition: A feedback arc set for a digraph is minimal if it contains no proper subset that is also a

feedback arc set for this graph.

Definition: An ordering R for a digraph G is said to be admissible if

a) The condition I(GIG2)JI> G2,GI)J is satisfied by all R-adjacent pairs [GIG 2] of disjoint consecu-

tive subgraphs of G, and

b) The feedback arc set FR determined by R is minimal.

By definition and by Theorem A2.4 a) it is clear that all optimum orderings of G are also admissi-

ble. However, there might be admissible orderings that are not optimum. We shall show that starting

from any arbitrary ordering of a digraph it is possible to obtain admissible orderings in polynomial

time. Hence for a class of digraphs in which an admissible ordering is also an optimum ordering in each

digraph, finding minimum feedback arc sets is indeed solvable in polynomial time. - "

The strategy we wish to employ to find optimum orderings is to start with any arbitrary ordering

* and first obtain an admissible ordering. The vertices of the graph are relabeled as a,b',c, - - - according

to this new ordering which we will refer to as the admissible reference ordering. This ordering is

then selectively perturbed to obtain a new admissible ordering with fewer feedback arcs (if one exists)

which then becomes the admissible reference and the process is repeated till an optimum ordering is

found. We need some more terminology and results before going into the description of the entire algo-

rithm.

Definition : Two sequential orderings of a digraph are F-identical if they determine the same feedback

arc set. An F-identical class of orderings is a set of orderings all of which are F-identical. Given an

admissible reference ordering Rf and an F-identical class V, the ordering in V that is lexicographi-



. , - .W ' W

219

callv closest to Rrf is said to be the F-representaive of t. Given a digraph with vertices labeled

according to some admissible reference ordering Rrf and given any arbitrary ordering P, a sequent

derived from R is an ordered pair of vertices [u,v] for which R(v)=R(u)+1. If, further,

Rr(u) < Rrf(v) then [uv] is an up-sequent; if Rret(U)> Rr(V) then [uv] is a down-sequent.

Theorem A2.5 In a reduced graph G whose vertices are labeled according to an admissible reference

* ordering Rrf, given an F-identical class V with an admissible F-representative RF, there exists one or

--* more arcs (uv) in G for every down-sequent [uv] derived from R.

Note : The arcs from u to v are forward arcs under RF but are feedback arcs under Rrf.

Proof : (See [60D. Since G is a reduced graph, there cannot be arcs both from u to v and from v to u.

. So, if we eliminate the possibilities of one or more arcs from v to u, or no arcs between u and v in G,

then we are done.

Suppose G has one or more arcs from v to u. Since (u,v] is a sequent derived from RF (i.e.,

RF(v)=RF(U)+ 1), reversing the order of u and v in RF produces an ordering with a feedback arc set

that is a proper subset of that determined by RF, thereby contradicting the minimality and, hence, the

admissibility of RF. Now suppose that there are no arcs between u and v in G. The ordering produced

from RF by switching the positions of u and v is then lexicographically closer to the reference Rref

".* -than RF. while having the same set of feedback arcs (i.e., the new ordering is also in V), which is a con-

tradiction to the designation of RF as the F-representative of W. 0

!. We now begin by describing an algorithm, which, for any given directed graph G{V,A) and some

...- arbitrary initial ordering R, obtains an admissible ordering RA. The algorithm to find optimum order-

.. ings then treats RA as a reference and selectively perturbs it to obtain a better ordering. This procedure

.- is iterated until an optimum ordering is obtained.



220

Main program

INPUT : Reduced graph G(VA) and initial ordering Rini,

OLTPU: An optimum ordering Ropt of G.

BEGIN
ADMISSIBLE (G(VA) , Rij, R)
p.-

0

-

OTIMM (G(V,A), R, R, p)
IF p=1 THEN

R-R'

GO TO step 2)
ELSE

"R -R

ENDIF
END

subroutine ADMISSIBLE (G(VA), R, RA)
BEGIN -

1) i.-0; Ro*-R ; "-IVI
2) CONSEC (G(VA), Ri , Ri,, p)
3) MINIMAL (G(VA), Ri0 , Rj+j, q)
4) IF p=l or q=1 THEN

". i*"i+l ..

GO TO step 2)
ELSE

R."Ri
RETURN RA

ENDIF
END

subroutine CONSEC (G(VA), R, R', p)
BEGIN

1) p.-O.
2) Relabel vertices of G as v 1,v 2,. ... V,

such that R(vi)-i for each i= 1,2, ... , n
3) FOR i=1 TO n DO

4) FOR i=1 TO n-2 DO
BEGIN

FOR j=i+I TO n-I DO
BEGIN

FOR k=j+ 1 TO n DO
BEGIN

.-. ,.,.:............. .... . .-...-... . ...-....... .. , .. .: ', ,., ., ... ... .'. ,..w. ', . ,: . .
; - ~~~~~~~~~~~~~~. .. . . . . ... ' d it m a l dt a'm ,i l'd J d lifi I~ t . .. I !



221

5) Vlv '7i| i, '~ ... - Vj-I

V2 lpvjl,.., Vk-1)
.- IV,Ii; "-, 2 -l~ "I

G2 .- G1V 2]6) s,-+- IG2G)
S2-- IG2,01 )I

7) IF S, <S2 THEN

FOR m=i TO j-1 DO
Rlvm)"R(vm)+U 2

FOR m=j TO k-I DO
:'_ .- R~vm)*-R(vm)-n,.

RETURN R'
ENDIF

E-D

'-v END
END

subroutine MINIMAL (G(VA), R, R', q)
BEGIN

1) q'-O
. 2) FOR EACH vertex vEV DO

Rv)-R(v)
- - 3) F, -(uv) EA : R(u)>R(v),

4) G'-G--F
5) F2 '-F,

- 6) FOR EACH arc aEF, DO
FEGIN

-" G'--G'+a

IF G' is still acvclic THEN
F -F 2-a
q'- 1

ELSE
G'-G'-a

ENDIF
END

7) IF q=I THEN
R' <- topological ordering on G'

ENDIF
RETURN R'

END

subroutine OPTIMUM (G(VA) , R, R ', p) "3
BEGIN



222

1) Relabel vertices of G according to R ; R'-R
2) i-1 ;Gj-G;R-R;11 -0,Q1 -1{(uv)EA(G) : Rj(u)>R,(v)}l M'-Qt."::

3) TREE (i, M)
4) NEXTSON (i j, noson)
5) IF noson=l THEN

IF i=1 THEN

R!-R
RETURN r

ELSE
ii-FATHER(i)
GO TO step 4)

ENDIF
ELSE

i4.-j

ENDIF
6) IF Qj < M-Ii THEN

p.-1pe-I

RETURN R
ELSE

GO TO step 3)
ENDIF

END

subroutine TREE (i, M)
BEGIN

1) F-(uv)EA(Gj): Rj(u))Rj(v)}
2) FOR EACH arc (uv)EF DO

BEGIN
UNITE (uv.GRj.G',R'r)
IF M-(i+r)>o THEN

ntree-ntree+ 1 "

j--ntree
Ij-1i+r

ADMISSIBLE (G',R',R.)

FATHER(j)--i
SON(i)-SON(i)U ij-

ENDIF
END

RETURN" ~E.% -D.

The subroutine ADMISSIBLE starts with an ordering Ri and calls CONSEC to check if it satisfies

condition a) of admissibility. If it does (indicator p-O) then there is no change; however, if not

, . . . . . . . . . - . ... .. . - . . . .. .,. .- . .. .. ... -, . -. ... - ... -- - -¢ - -.- '.. -. '-.., -.. ..- -. , -.-



223

(indicator p=l). then an intermediate ordering Ri, is produced with fewer feedback arcs. Subroutine

MINIMAL is then called to check for minimality of the feedback arc set F, of Ri,. If F, is found

minimal (indicator q=O) then, again, there is no change, otherwise (indicator q=1), the minimal proper

subset F, is found and a new ordering Ri+1 with this as its feedback arc set is obtained. If either p=l or

q-1, then Q(R,+n)<Q(Ri), in which case i is incremented by 1 and the process is repeated. In fact

Q(Ri+)--Q(Ri) if and only if both p-0 and q-0, in which case the program halts.

Theorem A2.6 : Given a digraph G(V,A) with n=V[ and a-JAJ and any initial sequential ordering,

the subroutine ADMISSIBLE halts at an admissible ordering and the number of computations involved

is bounded above by a polynomial P(na) in n and a.

Proof : Let RO,R,R 2, ... , , .- be the sequence of orderings produced during each iteration of sub-

routine ADMISSIBLE Let mi=Q(Ri) be the number of feedback arcs determined by Ri. Since

mi>mi.,, >0 for each i. there exists a smallest integer s such that m,=m,+t and mi>mi+ for each

0<i <s. Therefore the program halts after s iterations. At this stage both indicators p and q must be 0

-. i which means that R, must be admissible. Clearly s mo ra, therefore, the number of iterations is at

.l most the number of arcs in G.

During each call, steps 2) and 3) of CONSEC together involve at most 2n computations, while

. steps 5), 6), and 7) require at most (2n+a) computations for each R-adjacent pair tG,G21

* Lemma : Given a digraph G(VA) with n=IVI, and an ordering R, the number of R-adjacent pairs

" "[G 1,G2] of disjoint consecutive subgraphs of G is (n+1)n(n-l)/6.

Proof : Relabel the vertices of G as Vi,V 2 , ... , v according to R. Arrange n dots labeled 1,2, . n

on a straight line in ascending order fr .'m left to right. Place dummy dots 0 on the left of 1 and n+ 1

to the right of i. We now have a linear arrangement of n+2 dots creating n+1 empty spaces between

them. If we pick any three spaces among the n+1 empty spaces and place a slash (/) in each of them.

then we can associate V, to be the vertices corresponding to dots between the first and second slashes

while V 2 to those between the second and third slashes. G, and G, are then the consecutive subgraphs

...------...--.--..--.- - 7- -.. . . .



224

of G induced by V, and V2, respectively. Hence the proof of the lemma.

Therefore. the total number of computations performed during each call to CONSEC is at most

(2n+(2n+a)x(n 3 -n)/6). In subroutine MINIMAL step 6) requires at most 1ixa computations while

the other steps would need at most n+3a computations. Thus each iteration of ADMISSIBLE performs

at most Q(na)=2n+(2n+a)x(n 3-n)/6+n+3a+na computations. Since the number of iterations is ._

at most a we have P(na)=ao(n,a) as the upper bound on the total number of computations involved

in obtaining an admissible ordering for G. 0

We now consider the algorithm to find an optimum ordering of a digraph. By Theorem A2.2 we

need consider only reduced graphs. So, for a reduced graph G(V,A) with some arbitrary initial order-

ing, an admissible reference ordering R is first obtained. For each feedback arc of R a cyclic shift by

one order position is performed on the vertices of a consecutive subgraph, where the subgraph has,

before the shift, the feedback arc connecting its two extreme vertices. Of the two possible directions for

this cyclic shift, it is convenient to choose the one which results in fewer feedback arcs. This results in

a new ordering which has a down-sequent corresponding to the feedback arc of R. This results in Q(R)

new orderings which are made admissible by passing them through subroutine ADMISSIBLE. If one of

these admissible orderings R' is better than R, i.e, Q(R')<Q(R) then R' is treated as a new reference. If

one of the initial perturbations does not establish a new reference, then each of these is selectively per-

turbed in a similar way and thus the search branches out. It is clear that we are only looking at order-

ings whose down-sequents are feedback arcs of R. The following result justifies this approach.

Theorem A2.7 Given a reduced graph G(V,A) and an admissible reference ordering R. If R is not

optimum then there exists an ordering R with Q(R')<Q(R) such that every down-sequent of R'

corresponds to a feedback arc of R.

* Proof: Label the vertices of G according to the reference ordering R. Let Ro be an optimum ordering of

G. Since R is not optimum Q(Ro)<Q(R). Let * be the F-identical class containing R. Let R' be the

,*. F-representative of t. Since R' is optimum, it is also admissible. Also R' cannot be the same as R since

.. . ... .. . . . . . . . . . . . . . . . . . . . . . . . . . .



225

Q(R')<Q(R) and so must have at least one down-sequent. But by Theorem A2.5 every down sequent

[u,v] of R' must correspond to an arc (uv) in G. Since [u,v] is a down-sequent, we must have

'" R(u)?,R(v), by definition. Hence (uv) is a feedback arc of R.

We now describe a limiting mechanism which keeps the search for better orderings from becom-

ing extremely unwieldy. It is useful to imagine a tree which grows from a root vertex (labeled 1).

Associated with each vertex i of this tree is a reduced graph G i, an admissible ordering Ri on the ver-

tices of G i, Qi=Q(Ri) and an integer Ii which indicates the difference between the minimum number of

feedback arcs of G and Gi. Initially GI=G, R 1=R and 11=0, and M=Q(R). The subroutine TREE(iM)

creates 'sons' for vertex i in the tree as follows:

For each feedback arc of G i according to Ri a cyclic shift is performed to establish the end points

S-of this arc as a down sequent. The two vertices of this down-sequent are united into a single ver-

* tex and all self-loops and 2-cycles created by this union are eliminated resulting in a reduced

graph G and an ordering R. Let I' be the number of 2-cycles thus eliminated. Each vertex of G

"*' thus corresponds to a consecutive subgraph of the original graph G. The down-sequent, say [u,v"

which gets united into a single vertex, gets an equivalent label which is the label of v appended

to the label of t. Thus, R can also be treated as an ordering of G by reading off the labels of G' in

order according to R'. A 'son' j is created only if M-(I3 +r)>0, in which case GjG', Rj-R', and

i=i+r. If M--(1+I)<0 then it means that any ordering that will be derived from R' by the

above procedure will have at least Ij+I' arcs of G in its feedback arc set; therefore, an ordering

better than the original R can never be obtained this way.

- We would now like to make a few comments about the computational complexity of this pro-

cedure. The number of iterations in the main algorithm is again at most the number of arcs of G, since

" successive orderings are better than the previous ones. So if computations within subroutine OPTIMUM

can be performed in polynomial time then, indeed, the entire algorithm runs in polynomial time. This

is impossible since by Theorem A2.7 this algorithm indeed terminates in an optimum ordering, while

b
o  . ...

II ° ' 'o *. "o ". "° ". • .* ° .' '- ', " * ". ' . . °' -. *o ",° °, * ,° * ° .* " . - * ".°. . .. -.



, - - " ' - ", - " % - " - " . . ... ." - . • . . ... . . . . .

226

obtaining one is known to be NP-Complete. However, if one examines the computations within subrou-

tine OPTIM'M, the only quantity that can grow exponentially with n=iV is the number of vertices

of the tree. It would be interesting to find such a digraph on n vertices for any general n. An upper

bound on the depth of the tree is n-I since the leaves of the tree correspond to two-vertex digraphs

and the digraph associated with a son has one vertex less than that associated with its father. So, even

bounding the number of sons by k gives us at most k2 vertices zn the tree which does not help.

We now illustrate with an example the use of the above algorithm. Consider the reduced graph

G(VA) shown in Figure A2.1. The natural ordering abcd can easily be verified to be admiible.

Figure A2.2 shows the tree structure of the search for a better ordering. Note that [eca] represents a

consecutive subgraph of G with three vertices e, c, and a appearing in that order. The search ter-

minates at a three-vertex digraph with indicator p-i meaning that the ordering b,e,c,ad is a better

ordering. Indeed this new ordering has only two feedback arcs which is one less than that of the

natural ordering. The vertices are relabeled as a~b',c',d',e' according to this new admissible reference.

a

.. . ..

b M, . e -*.

.d d

'i ~Figure A2.1 : A reduced graph G(VA) .

'". '-ILA



227

Rb C d 0(R -3

13-3'



228

Figure A2.3 shows the tree-structure for the search for a better ordering. Since Q+II> 2 for each ver-

tex in the tree apart from the root, the search terminates at the root vertex with indicator p-O meaning

that the reference ordering is indeed optimum.



229

R bpoec. 9d Q(R) 2

--12

b 02a1 o b

12=2 13-2

!da,'(e'.b'I c' Q34-0 0 0 (d 8'1e b] C

Figure A2.3: Tree structure withi R! as the admissible reference

...........



,.

230

REFERENCES

[1] L W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits," Electronics

Research Laboratory Report #ERL-M520. University of California, Berkeley, May 1975.

[21 W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qamemzadeh, and T. R. Scott, "Algo-

rithms for ASTAP - A Network Analysis Program," IEEE Transactions on Circuit Theory, Vol.

CT-20, pp. 628-634, November 1973.

[3] P. Yang, I. N. Haji, and T. N. Trick, "SLATE: A Circuit Simulation Program with Latency Exploi-

tation and Node Tearing," Proceedings of the IEEE International Conference on Circuits and

Computers, pp. 353-355, October 1980.

[4] N. B. G. Rabbat, A. L Sangiovanni-Vincentelli, and H. Y. Hsieh, "A Multilevel Newton Algorithm

with Macromodelling and Latency for the Analysis of Large-scale Nonlinear Circuits in the Time

Domain." IEEE Transactions on Circuits and Systems, Vol CAS-26, pp. 733-741, September

1979.

[5] B. R. Chawla, H. K. Gummel, and P. Kozak, "MOTIS - An MOS Timing Simulator," IEEE Tran-

sactions on Circuits and Systems, Vol. CAS-22, pp. 901-910, December 1975.

[6] S. P. Fan, M. Y. Hsueh, A. R. Newton, and D. 0. Pederson, .MOTIS-C: A New Circuit Simulator

for MOS LSI Circuits," Proceedings of the IEEE International Symposium on Circuits and Sys-

tems, Phoenix, Arizona, pp. 700-703, April 1977.

(7] C. F. Chen, C. Y. Lo, H. N. Nham, and P. Subramaniam, "The Second Generation MOTIS Mixed

Mode Simulator," Proceedings of the 21st Design Automation Conference, Albuquerque. New

Mexico, pp. 10-17, June 1984.

(81 Y. P. Wei, I. N. Hajj and T. N. Trick, "A Prediction-Relaxation based Simulator for MOS Circuits," .

Proceedings of the IEEE International Conference on Circuits and Computers, New York, Sep-

tember 1982.

-. F-~~~ .lc," P-t t



231

[9] E. Lelarasmee, "The Waveform Relaxation Method for the Time Domain Analysis of Large Scale

Nonlinear Dynamical Systems," Ph.D. Dissertation. University of California, Berkeley, 1981.

[10] E. Lelarasmee, A. E. Ruehl, and A. L Sangiovanni-Vincentelli. "The Waveform Relaxation

Method for the Time Domain Amalysis of Large Scale Integrated Circuits," IEEE Transactions on

Computer-Aided Design, Vol. CAD-i, No. 3, pp. 131-145, July 1982.

- [11) J. White and A. L Sangiovanni-VincentellI "RELAX2 : A Modified Waveform Relaxation

Approach to the Simulation of MOS Digital Circuits," Proceedings of the IEEE International

Symposium on Circuits and Systems, California, pp.756-759, May 1983.

*+ [12] J. White and A. L Sangiovanni-Vincentelli, "RELAX2.1 : A Waveform Relaxation based Circuit

Simulation Program," Proceedings of the IEEE Custom Integrated Circuits Conference, Roches-

ter, New York, pp. 232-236, May 1984.

[13] A. R. Newton, "The Simulation of Large-Scale Integrated Circuits," IEEE Transactions on Cir-

cuits and Systems, VoL CAS-26, pp. 741-749, September 1979.

[14] G. Arnout and H. De Man, "The use of Threshold Functions and Boolean-Controlled Network Ele-

ments for Macromodelling of LSI Circuits," IEEE Journal of Solid State Circuits, Vol. SC-I 3,

pp. 326-332, June 1978.

[15] K. Sakallah and S. W. Director, "An Activity Directed Circuit Simulation Algorithm," Proceed-

ings of the IEEE International Conference on Circuits and Computers, New York. pp. 356-360,

October 1980.

* [161 G. R. Case, "SALOGS - A CDC 6600 Program to Simulate Digital Logic Networks, Vol. 1 - User's

Manual" Sandia Laboratory Report SAND 74-0441, 1975.

"171 S. A. Szygenda, "TEGAS2 - Anatomy of a General Purpose Test Generation and Simulation Sys-

tem for Digital Logic," Proceedings of the Ninth ACM Design Automation Workshop, June

1972.



L

232

[18] J. Jephson, R. McQuarrie, and R. Vogelsberg, "A Three-value Computer Design Verification Sys-

tem," IBM Systems Journal, Vol. 8. No. 3, pp. 178-188, 1969.

[19] R. E. Bryant, "An Algorithm for MOS Logic Simulation," LAMBDA (now VLSI) magazine, Vol.

1, No. 3, pp. 46-53, 1980.

[20] R. E. Bryant, "A Switch-level Simulation Model for Integrated Logic Circuits," Ph.D. thesis,

MIT/LCS/TR-259, Massachusetts Institute of Technology, Cambridge, March 1981.

[21] R. H. Byrd, G. D. Hachtel, M. R. Lightner, and M. H. Heydemann, "Switch Level Simulation:

Models, Theory and Algorithms," (to appear in) Advances in Computer-Aided Engineering Design,

A. L. Sangiovanni-Vincentelli, Editor, Jai Press, 1985.

[22] V. Ramachandran, "An Improved Switch-level Simulator for MOS Circuits," Proceedings of the

20th Design Automation Conference, Miami Beach, Florida, pp. 293-299, June 1983.

[23] V. Ramachandran, "A Linear Time Algorithm for Race Detection in Transistor Switch-level Cir-

cuits." Proceedings of the IEEE International Conference on Computer Design, New York, pp.

345-348, November 1983.

[24] 1. N. Hajj and D. G. Saab, "Logic and Fault Simulation of MOS Circuits Based on Symbolic Expres-

sion Generation," (submitted to) IEEE Transactions on Circuits and Systems.

[251 1. N. Hajj and D. G. Saab, "Symbolic Logic Simulation of MOS Circuits," Proceedings of the

IEEE International Symposium on Circuits and Systems, Newport Beach, California, pp. 246-

249, May 1983.

[26] C. J. Terman, "RSIM - A Logic-Level Timing Simulator," Proceedings of the IEEE International a

Conference on Computer Design, New York, pp. 437-440, November 1983.

[27] C. J. Terman, "Simulation Tools for Digital LSI Design" Ph.D. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 1983.

34~



. . . ..~7 W. W7 . . .

233

[28] V. B. Rao, T. N. Trick, and M. R. Lightner, "Hazard Detection in a Multiple Delay Logic Simula-

tor," Proceedings of the IEEE International Symposium on Circuits and Systems, Rome, Italy,

pp. 72-75, May 1982.

* [291 Vasant B. Rao, "Algorithms for a Multiple Delay Simulator," M.S. Thesis, Department of Electrical

," Engineering, University of Illinois, Urbana, March 1982.

[30) V. B. Rao, T. N. Trick, and I. N. Hajj "A Table-driven Delay Operator Approach to Timing Simu-

lation of MOS VLSI Circuits," Proceedings of the IEEE International Conference on Computer

Design, New York, pp. 445-448, November 1983.

- 311 R. Tarjan, "Depth First Search and Linear Graph Algorithms," SIAM Journal of Computing, Vol.

1, No. 2, pp. 146-160, June 1972.

" [32] C. W. Ho, A. E. Ruehli, and P. A. Brennan, "The Modified Nodal Approach to Network Analysis,"

IEEE Transactions on Circuits and Systems, Vol CAS-22, pp. 504-509, June 1975.

[33] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, "The Sparse Tableau Approach to Network

*" Analysis and Design" IEEE Transactions on Circuit Theory, Vol. CT-18, pp. 101-113, January

1971.

[34] L 0. Chua and P. M. Lin, Computer-Aided Analysis of Electronic Circuits Algorithms and

Computational Techniques. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 1975, pp. 631-664.

[35] 1. N. Hajj "Sparsity considerations in Network Solution by Tearing," IEEE Transactions on Cir-

cuits and Systems, Vol. CAS-27, No. 5, pp. 357-366, May 1980.

[36] G. D. Hachtel and A. L Sangiovanni-Vincentelli, "A Survey of Third Generation Simulation

Techniques," Proceedings of the IEEE, VoL 69, No. 10, pp. 1264-1280, October 1981.

(371 W. K. Chia, T. N. Trick, and L N. Haj, "Stability and Convergence Properties of Relaxation

Methods for Hierarchical Simulation of VLSI Circuits," Proceedings of the IEEE International

Symposium on Circuits and Systems, Montreal, Canada, pp. 848-851, May 1984.



234

[38] D. G. Luenberger, Optimization by Vector Space Methods. New York: John-Wiley & Sons Inc,

1969, pp. 144-145.

[39] M. Yoeli and S. Rinon, "Application of Ternary Algebra to the Study of Static Hazards," Journal

of the ACM, Vol. 11, No. 1, pp. 84-97, January 1964. -

[40] E. EL Eichelberger, "Hazard Detection in Combinatorial and Sequential Switching Circuits," IBM

Journal of Research and Development, Vol. 9, pp. 90-99, March 1965.

[41] P. Wilcox, "Digital Logic Simulation at the Gate and Functional Level," Proceedings of the IEEE

Design Automation Conference, New York, pp. 242-248, 1979.

[42] S. Seshu and D. N. Freeman, "The Diagnosis of Asynchronous Sequential Switching Systems," IRE

Transactions on Electronic Computing, Vol. EC-11, No. 4, pp. 459-465, August 1962.

[43] S. A. Szygenda and E. W. Thompson, "Modelling and Digital Simulation for Design Verification

and Diagnosis," IEEE Transactions on Computers, Vol. C-25, pp. 1242-1253, December 1976.

[44] H. N. Nham and A. K. Bose, "A Multiple Delay Simulator for MOS LSI Circuits," Proceedings of

the 17th Design Automation Conference, pp. 610-617, June 1980.

[45] E. G. Urich, "Exclusive Simulation of Activity in Digital Networks," Communications of the

ACM. Vol. 12, No. 2, pp. 102-110, February 1969.

[46] W. C. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to

Wideband Amplifiers," Journal of Applied PFhysics, Vol. 19, pp. 55-64, January 1948.

[47] P. Penfield and J. Rubinstein, "Signal Delays in RC Tree Networks," Proceedings of the 18th

Design Automation Conference, pp. 613-617, 1981.

[48] C. Chicoix, J. Pedousmt, and N. Giambiasi, "An Accurate Time Delay Model for Large Digital Net-

work Simulation," Proceedings of the 13th Design Automation Conference, pp. 54-60, June

1976.

- *. .... ... ~ ........



*1'

235

[49] C. M. Baker, "Artwork Analysis Tools for VLSI Circuits," M.S. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Camgridge, June 1980.

[50] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New York: North-Holland

Publishing Company, 1982.

[51] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms.

Reading, Massachusetts: Addison-Wesley Publishing Company, 1974.

- [52] .L R. Garey and D. S. Johnson, Computers and Intractability A Guide to the Theory of NP-

Completeness. New York: W. H. Freeman and Company, 1979.

[53] S. Even. Graph Algorithms. Rockville, Maryland: Computer Science Press. 1979.

[54] Z. Kohavi, Switching and Finite Automata Theory. Second Edition. New York: McGraw-Hill

Book Company, 1978.

[55] A. R. Newton and D. 0. Pederson, "Analysis Time, Accuracy and Memory Requirement Tradeoffs

in SPICE2," Proceedings of the Eleventh Annual Asilomar Conference on Circuits. Systems and

Computers, Asilomar, California, pp. 6-9, November 1977.

[56] M. Y. TsaL *Pass Transistor Networks in MOS Technology : Synthesis, Performance, and Testing,"

Proceedings of the IEEE International Symposium on Circuits and Systems, Newport Beach.

California, pp. 509-512, May 1983.

[571 R. M. Karp, "Reducibility among Combinatorial Problems," Complexity of Computer Computa-

tions. New York: Plenum Press, 1972, pp. 85-103.

- -- . . .



236

[58 F. Gavril, "Some NP-Complete problems on Graphs," Proceedings of the Eleventh Conference on

Information Sciences and Systems, Johns Hopkins University, Baltimore, Maryland, pp. 91-95,

1977.

[59] C. L Luchesi, "A Minimax Equality for Directed Graphs," Doctoral Thesis, University of Water-

loo, Canada, 1976.

[60 D. H. Younger, "Minimum Feedback Arc Sets for a Directed Graph" IEEE Transactions on Cir-

cuit Theory, pp. 238-245, June 1%3.

[611 A. Gupta. "ACE : A Circuit Extractor," Proceedings of the ACM-IEEE 20th Design Automation

Conference," Miami Beach, Florida, pp. 721-725, June 1983.

[62] R. E. Bryant, "Race Detection in MOS Circuits by Ternary Simulation," VLSI 83, F. Anceau, Edi-

tor. New York: North-Holland Publishing Company, August 1983.

[63] R. E. Bryant, "A Switch-level Model and Simulator for MOS Digital Circuits," IEEE Transac-

tions on Computers. Vol. C-33, No. 2, pp. 160-177, February 1984.

[64] J. A. Brzozowski and M. Yoeli. "On a Ternary Model of Gate Networks," IEEE Transactions on

Computers, Vol. C-28, No. 3, pp. 178-183, March 1979. -

[65] T. Lengauer and S. Naher, "Delay-independent Switch-level Simulation of Digital MOS Circuits,"

(a pre-print from) VLSI Algorithms and Architectures, Amalfi, Italy, May 1984.

[66] E. N. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms Theory and Practice.

Englewood Cliffs, New Jersey- Prentice-Hall Inc., 1977.

.~~~~~' . .



237

"a [67] D. Coppersmith and S. Winograd, "On the Asymptotic Complexity of Matrix Multiplication,"

S..- SAM Journal on Computing. Vol. 11, No. 3. pp. 472-492, August 1982.

%I

. .- A



238

VITA

Vasant Rao was born in Bangalore, India, on July 25, 1959. He received his Bachelor of Technol-

ogy degree in Electrical Engineering (Electronics) from the Indian Institute of Technology, Madras,

India, in June 1980. In August 1980 he entered the University of Illinois at Urbana-Champaign and

received his M.S. degree in Electrical Engineering in March 1982. From August 1980 to December 1984

he worked as a Research Assistant at the Coordinated Science Laboratory, Urbana, and as a Teaching

Asistant with the Department of Electrical Engineering at the University of Illinois. He has accepted a

position as an Assistant Professor in Electrical Engineering at the University of Illinois at Urbana-

Champaign. His research interests include the areas of simulation of VLSI circuits, computer-aided

design, semiconductor device modeling, and combinatorial and graph algorithms.

..........................

.•.-. . --

. . . . . . . . . . . . . . .



FILMED

DbId


